首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
Endothelial progenitor cells (EPCs) play a significant role in physiological and pathological hypoxia resistance and neovascularization processes. The ability to mobilize EPCs from bone marrow usually indicates a prognostic endpoint of several vascular diseases. Thus, it is of great value to study possible approaches for activating functional EPCs. The mobilization/homing of EPCs from bone marrow is signalled by stromal‐derived factor‐1 (SDF‐1), which is regulated by the hypoxia‐inducible factor‐1α (HIF‐1α). This study investigated the effects of directly manipulating HIF‐1α on human EPCs in vitro. EPCs were isolated from human umbilical cord blood. Lentiviral vectors carrying HIF‐1α and shRNA targeting HIF‐1α were constructed for gene modification of the EPCs. Results demonstrated that after overexpression of HIF‐1α by lentiviral transfection, the proliferative capacity of EPCs was elevated while the apoptosis was inhibited and vice versa. On the other hand, the expression of angiogenic‐related cytokines including SDF‐1 was upregulated on both gene and protein levels when EPCs were transfected with HIF‐1α. These results indicate that direct HIF‐1α manipulation over human EPCs is an effective method to promote EPC function and mobilization, thus suggest that drugs or reagents that elevate HIF‐1α expression are capable of treating ischemic diseases. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Transplanting stem cells differentiated towards a cardiac lineage can regenerate cardiac muscle tissues to treat myocardial infarction. In this study, we tested the hypothesis that transforming growth factor‐β1 (TGF‐β1) induces cardiomyogenic differentiation of adipose‐ derived stromal cells (ADSCs) in vitro. Rat ADSCs were cultured with TGF‐β1 (10 ng ml?1) for 2 weeks in vitro. ADSCs cultured without TGF‐β1 served as a control. The mRNA expression of cardiac‐specific gene was induced by TGF‐β1, while the control culture did not show cardiac‐specific gene expression. Immunocytochemical analyses showed that a small fraction of ADSCs cultured with TGF‐β1 for 2 weeks stained positively for cardiac myosin heavy chain (MHC) and α‐sarcomeric actin. Flow cytometric analyses showed that the proportion of cells expressing cardiac MHC increased with TGF‐β1. However, no mesenchymal differentiation (e.g., osteogenic and adipogenic differentiation) was detected other than cardiomyogenic differentiation. These results showed that TGF‐β1 induce ADSC cardiomyogenic differentiation in vitro, which could be useful for myocardial infarction stem cell therapy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Allogeneic haematopoietic stem cell transplantation (allo‐HSCT) is the only curative method in treating haematologic malignant diseases. Graft‐versus‐host disease (GVHD) is a common complication post–allo‐HSCT, which can be life‐threatening. Mesenchymal stem cells (MSCs) as an adult stem cell with immunoregulatory function have demonstrated efficacy in steroid resistant acute GVHD (aGVHD). However, the outcome of aGVHD treated with MSCs in clinical trials varied and its underlying mechanism is still unclear. TGF‐β1 is a potent cytokine, which plays a key role in immunoregulation. In the present study, we firstly transduced the lentivirus vector containing TGF‐β1 gene with mouse bone marrow‐derived MSCs. Then, we investigated the immunosuppressive effect of TGF‐β1 gene‐modified MSCs on lymphocytes in vitro and its preventive and therapeutical effects on murine aGVHD model in vivo. Murine MSC was successfully isolated and identified. TGF‐β1 was efficiently transduced into mouse MSCs, and high level TGF‐β1 was detected. MSC‐TGF‐β1 shared the same morphology and immunotypic features of normal MSC. In vitro, MSC‐TGF‐β1 showed enhanced immunosuppressive function on lymphocyte proliferation. In vivo, MSC‐TGF‐β1 showed enhanced amelioration on the severity of aGVHD both in prophylactic and therapeutic murine models. Finally, the macrophages (MØs) derived from MSC‐TGF‐β1–treated mice showed a remarkably increasing of anti‐inflammatory M2‐like phenotype. Furthermore, the differentiation of CD4+ CD25+ Foxp3+ Treg cells was significantly increased in MSC‐TGF‐β1–treated group. Taken together, we proved that MSC‐TGF‐β1 showed enhanced alleviation of aGVHD severity in mice by skewing macrophages into a M2 like phenotype or increasing the proportion of Treg cells, which opens a new frontier in the treatment of aGVHD.  相似文献   

10.
Stromal cell‐derived factor‐1 (SDF‐1) is a well‐characterized cytokine that protects heart from ischaemic injury. However, the beneficial effects of native SDF‐1, in terms of promoting myocardial repair, are limited by its low concentration in the ischaemic myocardium. Annexin V (AnxA5) can precisely detect dead cells in vivo. As massive cardiomyocytes die after MI, we hypothesize that AnxA5 can be used as an anchor to carry SDF‐1 to the ischaemic myocardium. In this study, we constructed a fusion protein consisting of SDF‐1 and AnxA5 domains. The receptor competition assay revealed that SDF‐1‐AnxA5 had high binding affinity to SDF‐1 receptor CXCR4. The treatment of SDF‐1‐AnxA5 could significantly promote phosphorylation of AKT and ERK and induce chemotactic response, angiogenesis and cell survival in vitro. The binding membrane assay and immunofluorescence revealed that AnxA5 domain had the ability to specifically recognize and bind to cells injured by hypoxia. Furthermore, SDF‐1‐AnxA5 administered via peripheral vein could accumulate at the infarcted myocardium in vivo. The treatment with SDF‐1‐AnxA5 attenuated cell apoptosis, enhanced angiogenesis, reduced infarcted size and improved cardiac function after mouse myocardial infarction. Our results suggest that the bifunctional SDF‐1‐AnxA5 can specifically bind to dead cells. The systemic administration of bifunctional SDF‐1‐AnxA5 effectively provides cardioprotection after myocardial infarction.  相似文献   

11.
Leydig cell transplantation is a better alternative in the treatment of androgen‐deficient males. The main purpose of this study was to investigate the effects of induced pluripotent stem cell‐derived conditioned medium (iPS‐CM) on the anti‐apoptosis, proliferation and function of immature Leydig cells (ILCs), and illuminate the underlying mechanisms. ILCs were exposed to 200 μmol/L hydrogen peroxide (H2O2) for 24 hours with or without iPS‐CM treatments. Cell apoptosis was detected by flow cytometric analysis. Cell proliferation was assessed using cell cycle assays and EdU staining. The steroidogenic enzyme expressions were quantified with Western blotting. The results showed that iPS‐CM significantly reduced H2O2‐induced ILC apoptosis through down‐regulation of autophagic and apoptotic proteins LC3‐I/II, Beclin‐1, P62, P53 and BAX as well as up‐regulation of BCL‐2, which could be inhibited by LY294002 (25 μmol/L). iPS‐CM could also promote ILC proliferation through up‐regulation of β‐catenin and its target proteins cyclin D1, c‐Myc and survivin, but was inhibited by XAV939 (10 μmol/L). The level of bFGF in iPS‐CM was higher than that of DMEM‐LG. Exogenous bFGF (20 ng/mL) or Wnt signalling agonist lithium chloride (LiCl) (20 mmol/L) added into DMEM‐LG could achieve the similar effects of iPS‐CM. Meanwhile, iPS‐CM could improve the medium testosterone levels and up‐regulation of LHCGR, SCARB1, STAR, CYP11A1, HSD3B1, CYP17A1, HSD17B3 and SF‐1 in H2O2‐induced ILCs. In conclusion, iPS‐CM could reduce H2O2‐induced ILC apoptosis through the activation of autophagy, promote proliferation through up‐regulation of Wnt/β‐catenin pathway and enhance testosterone production through increasing steroidogenic enzyme expressions, which might be used in regenerative medicine for future.  相似文献   

12.
The intra‐articular injection of adipose‐derived stem cells (ASCs) is a novel potential therapy for patients with osteoarthritis (OA). However, the efficacy of ASCs from different regions of the body remains unknown. This study investigated whether ASCs from subcutaneous or visceral adipose tissue provide the same improvement of OA. Mouse and human subcutaneous and visceral adipose tissue were excised for ASC isolation. Morphology, proliferation, surface markers and adipocyte differentiation of subcutaneous ASCs (S‐ASCs) and visceral ASCs (V‐ASCs) were analysed. A surgically induced rat model of OA was established, and 4 weeks after the operation, S‐ASCs, V‐ASCs or phosphate‐buffered saline (PBS, control) were injected into the articular cavity. Histology, immunohistochemistry and gene expression analyses were performed 6 weeks after ASC injection. The ability of ASCs to differentiate into chondrocytes was assessed by in vitro chondrogenesis, and the immunosuppressive activity of ASCs was evaluated by co‐culturing with macrophages. The proliferation of V‐ASCs was significantly greater than that of S‐ASCs, but S‐ASCs had the greater adipogenic capacity than V‐ASCs. In addition, the infracted cartilage treated with S‐ASCs showed significantly greater improvement than cartilage treated with PBS or V‐ASCs. Moreover, S‐ASCs showed better chondrogenic potential and immunosuppression in vitro. Subcutaneous adipose tissue is an effective cell source for cell therapy of OA as it promotes stem cell differentiation into chondrocytes and inhibits immunological reactions.  相似文献   

13.
14.
15.
Adipose‐derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) that possess many of the same regenerative properties as other MSCs. However, the ubiquitous presence of ADSCs and their ease of access in human tissue have led to a burgeoning field of research. The plastic surgeon is uniquely positioned to harness this technology because of the relative frequency in which they perform procedures such as liposuction and autologous fat grafting. This review examines the current landscape of ADSC isolation and identification, summarizes the current applications of ADSCs in the field of plastic surgery, discusses the risks associated with their use, current barriers to universal clinical translatability, and surveys the latest research which may help to overcome these obstacles.  相似文献   

16.
Stem cell transplantation is a candidate method for the treatment of Leydig cell dysfunction‐related diseases. However, there are still many problems that limit its clinical application. Here, we report the establishment of CXCR4‐SF1 bifunctional adipose‐derived stem cells (CXCR4‐SF1‐ADSCs) and their reparative effect on Leydig cell dysfunction. CD29+ CD44+ CD34? CD45? ADSCs were isolated from adipose tissue and purified by fluorescence‐activated cell sorting (FACS). Infection with lentiviruses carrying the CXCR4 and SF1 genes was applied to construct CXCR4‐SF1‐ADSCs. The CXCR4‐SF1‐ADSCs exhibited enhanced migration and had the ability to differentiate into Leydig‐like cells in vitro. Furthermore, the bifunctional ADSCs were injected into BPA‐mediated Leydig cell damage model mice via the tail vein. We found that the CXCR4‐SF1‐ADSCs were capable of homing to the injured testes, differentiating into Leydig‐like cells and repairing the deficiency in reproductive function caused by Leydig cell dysfunction. Moreover, we investigated the mechanism underlying SF1‐mediated differentiation and testosterone synthesis in Leydig cells, and the B‐box and SPRY Domain Containing Protein (BSPRY) gene was proposed to be involved in this process. This study provides insight into the treatment of Leydig cell dysfunction‐related diseases.  相似文献   

17.
Previous studies have shown that the ovarian failure in autoimmune‐induced premature ovarian failure (POF) mice could be improved by the transplantation of human placenta‐derived mesenchymal stem cells (hPMSCs); however, the protective mechanism of hPMSCs transplantation on ovarian dysfunction remains unclear. Ovarian dysfunction is closely related to the apoptosis of granulosa cells (GCs). To determine the effects of hPMSCs transplantation on GCs apoptosis, an autoimmune POF mice model was established with zona pellucida glycoprotein 3 (ZP3) peptide. It is reported that the inositol‐requiring enzyme 1α (IRE1α) and its downstream molecules play a central role in the endoplasmic reticulum (ER) stress‐induced apoptosis pathway. So the aim of this study is to investigate whether hPMSCs transplantation attenuated GCs apoptosis via inhibiting ER stress IRE1α signaling pathway. The ovarian dysfunction, follicular dysplasia, and GCs apoptosis were observed in the POF mice. And the IRE1α pathway was activated in ovaries of POF mice, as demonstrated by, increased X‐box binding protein 1 (XBP1), up‐regulated 78 kDa glucose‐regulated protein (GRP78) and caspase‐12. Following transplantation of hPMSCs, the ovarian structure and function were significantly improved in POF mice. In addition, the GCs apoptosis was obviously attenuated and IRE1α pathway was significantly inhibited. Transplantation of hPMSCs suppressed GCs apoptosis‐induced by ER stress IRE1α signaling pathway in POF mice, which might contribute to the hPMSCs transplantation‐mediating ovarian function recovery.  相似文献   

18.
19.
20.
Mesenchymal stem cells (MSCs) have drawn great attention because of their therapeutic potential. It has been suggested that intra‐venous infused MSCs could migrate the site of injury to help repair the damaged tissue. However, the mechanism for MSC migration is still not clear so far. In this study, we reported that hypoxia increased chemotaxis migration of MSCs. At 4 and 6 hours after culturing in hypoxic (1% oxygen) conditions, the number of migrated MSCs was significantly increased. Meanwhile, hypoxia also increased the expression of HIF‐1α and SDF‐1. Using small interference RNA, we knocked down the expression of HIF‐1α in MSCs to study the role of HIF‐1α in hypoxia induced migration. Our data indicated that knocking down the expression of HIF‐1α not only abolished the migration of MSCs, but also reduced the expression of SDF‐1. Combining the results of migration assay and expression at RNA and protein level, we demonstrated a novel mechanism that controls the increase of MSCs migration. This mechanism involved HIF‐1α mediated SDF‐1 expression. These findings provide new insight into the role of HIF‐1α in the hypoxia induced MSC migration and can be a benefit for the development of MSC‐based therapeutics for wound healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号