首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relatively little is known about whether and how nongenetic inheritance interacts with selection to impact the evolution of phenotypic plasticity. Here, we empirically evaluated how stabilizing selection and a common form of nongenetic inheritance—maternal environmental effects—jointly influence the evolution of phenotypic plasticity in natural populations of spadefoot toads. We compared populations that previous fieldwork has shown to have evolved conspicuous plasticity in resource‐use phenotypes (“resource polyphenism”) with those that, owing to stabilizing selection favouring a narrower range of such phenotypes, appear to have lost this plasticity. We show that: (a) this apparent loss of plasticity in nature reflects a condition‐dependent maternal effect and not a genetic loss of plasticity, that is “genetic assimilation,” and (b) this plasticity is not costly. By shielding noncostly plasticity from selection, nongenetic inheritance generally, and maternal effects specifically, can preclude genetic assimilation from occurring and consequently impede adaptive (genetic) evolution.  相似文献   

2.
Throughout the recent history of research at the intersection of evolution and development, notions such as developmental constraint, evolutionary novelty, and evolvability have been prominent, but the term “developmental bias” has scarcely been used. And one may even doubt whether a unique and principled definition of bias is possible. I argue that the concept of developmental bias can still play a vital scientific role by means of setting an explanatory agenda that motivates investigation and guides the formulation of integrative explanatory frameworks. Less crucial is a definition that would classify patterns of phenotypic variation and unify variational patterns involving different traits and taxa as all being “bias.” Instead, what we should want is a concept that generates intellectual identity across various researchers, and that unites the diverse fields and approaches relevant to the study of developmental bias, from paleontology to behavioral biology. I point to some advantages of conducting research specifically under the label of “developmental bias,” compared with employing other, more common terms such as “evolvability.”  相似文献   

3.
The role of developmental bias and plasticity in evolution is a central research interest in evolutionary biology. Studies of these concepts and related processes are usually conducted on extant systems and have seen limited investigation in the fossil record. Here, I identify plasticity‐led evolution (PLE) as a form of developmental bias accessible through scrutiny of paleontological material. I summarize the process of PLE and describe it in terms of the environmentally mediated accumulation and release of cryptic genetic variation. Given this structure, I then predict its manifestation in the fossil record, discuss its similarity to quantum evolution and punctuated equilibrium, and argue that these describe macroevolutionary patterns concordant with PLE. Finally, I suggest methods and directions towards providing evidence of PLE in the fossil record and conclude that such endeavors are likely to be highly rewarding.  相似文献   

4.
The question of whether “developmental bias” can influence evolution is still controversial, despite much circumstantial evidence and a good theoretical argument. Here, I will argue that the domestication of mammalian species, which took place independently more than two dozen times, provides a particularly convincing example of developmental bias in evolution. The singular finding that underlies this claim is the repeated occurrence in domesticated mammals of a set of distinctive traits, none of which were deliberately selected. This phenomenon has been termed “the domestication syndrome”. In this article, I will: (a) describe the properties of the domestication syndrome; (b) show how it can be explained in terms of the operation of a specific genetic regulatory network, that which governs neural crest cell development; and (c) discuss Dmitry Belyaev's idea of “destabilizing selection,” which holds that selecting for a new behavior often entails neuroendocrine alterations that alter many aspects of development. Finally, I will argue for the potential general significance of such destabilizing selection, in combination with developmental bias, in animal evolution.  相似文献   

5.
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent nonlinear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can “store” and “recall” multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and “generalize” (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviors follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well‐understood in the context of neural networks. This helps to explain how development facilitates the evolution of high‐fitness phenotypes and how this ability changes over evolutionary time.  相似文献   

6.
It has long been assumed that serial homologues are ancestrally similar—polysomerism resulting from a “duplication” or “repetition” of forms—and then often diverge—anisomerism, for example, as they become adapted to perform different tasks as is the case with the forelimb and hind limbs of humans. However, such an assumption, with crucial implications for comparative, evolutionary, and developmental biology, and for evolutionary developmental biology, has in general not really been tested by a broad analysis of the available empirical data. Perhaps not surprisingly, more recent anatomical comparisons, as well as molecular knowledge of how, for example, serial appendicular structures are patterned along with different anteroposterior regions of the body axis of bilateral animals, and how “homologous” patterning domains do not necessarily mark “homologous” morphological domains, are putting in question this paradigm. In fact, apart from showing that many so-called “serial homologues” might not be similar at all, recent works have shown that in at least some cases some “serial” structures are indeed more similar to each other in derived taxa than in phylogenetically more ancestral ones, as pointed out by authors such as Owen. In this article, we are taking a step back to question whether such assumptions are actually correct at all, in the first place. In particular, we review other cases of so-called “serial homologues” such as insect wings, arthropod walking appendages, Dipteran thoracic bristles, and the vertebrae, ribs, teeth, myomeres, feathers, and hairs of chordate animals. We show that: (a) there are almost never cases of true ancestral similarity; (b) in evolution, such structures—for example, vertebra—and/or their subparts—for example, “transverse processes”—many times display trends toward less similarity while in many others display trends toward more similarity, that is, one cannot say that there is a clear, overall trend to anisomerism.  相似文献   

7.
The relation of developmental plasticity to evolutionary diversification is a key component of evolutionary theory involving developmental bias, but the basis of the relationship varies among traits and among taxa. Here I review some scenarios of how structural integration during early organogenesis could influence this relationship. When condensations are highly integrated and dependent on each other during early organogenesis, both plasticity and evolution are restricted, for example size proportions in molar tooth rows and phalanges within a digit. When similar condensations develop and remain separate (in tracheal cartilages and feather buds), they show high levels of variation and diversity in number but not in shape and size, at least at early stages. When non‐similar structures form separately and then integrate while still undergoing patterning, high levels of plasticity (in number, size, shape; in rib uncinate processes) or new dimensions of ecologically‐significant variation (cusp offset, in mammal teeth) are seen. Although each of these structural integration scenarios is unique, the modulation of evolvability is detectable and informative. Parsing the influence of structural integration at these developmental levels, rather than later‐stage structural correlations or only through genetic covariation, may be necessary to advance understanding of evolvability of the phenotype.  相似文献   

8.
Developmental plasticity looks like a promising bridge between ecological and developmental perspectives on evolution. Yet, there is no consensus on whether plasticity is part of the explanation for adaptive evolution or an optional “add‐on” to genes and natural selection. Here, we suggest that these differences in opinion are caused by differences in the simplifying assumptions, and particular idealizations, that enable evolutionary explanation. We outline why idealizations designed to explain evolution through natural selection prevent an understanding of the role of development, and vice versa. We show that representing plasticity as a reaction norm conforms with the idealizations of selective explanations, which can give the false impression that plasticity has no explanatory power for adaptive evolution. Finally, we use examples to illustrate why evolutionary explanations that include developmental plasticity may in fact be more satisfactory than explanations that solely refer to genes and natural selection.  相似文献   

9.
The two “rules of speciation”—the Large X‐effect and Haldane's rule—hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations—the “dominance theory” and faster male evolution—both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex‐specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.  相似文献   

10.
Functional traits can covary to form “functional syndromes.” Describing and understanding functional syndromes is an important prerequisite for predicting the effects of organisms on ecosystem functioning. At the intraspecific level, functional syndromes have recently been described, but very little is known about their variability among populations and—if they vary—what the ecological and evolutionary drivers of this variation are. Here, we quantified and compared the variability in four functional traits (body mass, metabolic rate, excretion rate, and boldness), their covariations and the subsequent syndromes among thirteen populations of a common freshwater fish (the European minnow, Phoxinus phoxinus). We then tested whether functional traits and their covariations, as well as the subsequent syndromes, were underpinned by the phylogenetic relatedness among populations (historical effects) or the local environment (i.e., temperature and predation pressure), and whether adaptive (selection or plasticity) or nonadaptive (genetic drift) processes sustained among‐population variability. We found substantial among‐population variability in functional traits and trait covariations, and in the emerging syndromes. We further found that adaptive mechanisms (plasticity and/or selection) related to water temperature and predation pressure modulated the covariation between body mass and metabolic rate. Other trait covariations were more likely driven by genetic drift, suggesting that nonadaptive processes can also lead to substantial differences in trait covariations among populations. Overall, we concluded that functional syndromes are population‐specific, and that both adaptive and nonadaptive processes are shaping functional traits. Given the pivotal role of functional traits, differences in functional syndromes within species provide interesting perspectives regarding the role of intraspecific diversity for ecosystem functioning.  相似文献   

11.
Phenotypic plasticity allows organisms to alter their phenotype in direct response to changes in the environment. Despite growing recognition of plasticity's role in ecology and evolution, few studies have probed plasticity's molecular bases—especially using natural populations. We investigated the genetic basis of phenotypic plasticity in natural populations of spadefoot toads (Spea multiplicata). Spea tadpoles normally develop into an “omnivore” morph that is favored in long‐lasting, low‐density ponds. However, if tadpoles consume freshwater shrimp or other tadpoles, they can alternatively develop (via plasticity) into a “carnivore” morph that is favored in ephemeral, high‐density ponds. By combining natural variation in pond ecology and morph production with population genetic approaches, we identified candidate loci associated with each morph (carnivores vs. omnivores) and loci associated with adaptive phenotypic plasticity (adaptive vs. maladaptive morph choice). Our candidate morph loci mapped to two genes, whereas our candidate plasticity loci mapped to 14 genes. In both cases, the identified genes tended to have functions related to their putative role in spadefoot tadpole biology. Our results thereby form the basis for future studies into the molecular mechanisms that mediate plasticity in spadefoots. More generally, these results illustrate how diverse loci might mediate adaptive plasticity.  相似文献   

12.
The generation of variation is paramount for the action of natural selection. Although biologists are now moving beyond the idea that random mutation provides the sole source of variation for adaptive evolution, we still assume that variation occurs randomly. In this review, we discuss an alternative view for how phenotypic plasticity, which has become well accepted as a source of phenotypic variation within evolutionary biology, can generate nonrandom variation. Although phenotypic plasticity is often defined as a property of a genotype, we argue that it needs to be considered more explicitly as a property of developmental systems involving more than the genotype. We provide examples of where plasticity could be initiating developmental bias, either through direct active responses to similar stimuli across populations or as the result of programmed variation within developmental systems. Such biased variation can echo past adaptations that reflect the evolutionary history of a lineage but can also serve to initiate evolution when environments change. Such adaptive programs can remain latent for millions of years and allow development to harbor an array of complex adaptations that can initiate new bouts of evolution. Specifically, we address how ideas such as the flexible stem hypothesis and cryptic genetic variation overlap, how modularity among traits can direct the outcomes of plasticity, and how the structure of developmental signaling pathways is limited to a few outcomes. We highlight key questions throughout and conclude by providing suggestions for future research that can address how plasticity initiates and harbors developmental bias.  相似文献   

13.
Microbial taxa range from being ubiquitous and abundant across space to extremely rare and endemic, depending on their ecophysiology and on different processes acting locally or regionally. However, little is known about how cosmopolitan or rare taxa combine to constitute communities and whether environmental variations promote changes in their relative abundances. Here we identified the Spatial Abundance Distribution (SpAD) of individual prokaryotic taxa (16S rDNA‐defined Operational Taxonomic Units, OTUs) across 108 globally‐distributed surface ocean stations. We grouped taxa based on their SpAD shape (“normal‐like”‐ abundant and ubiquitous; “logistic”‐ globally rare, present in few sites; and “bimodal”‐ abundant only in certain oceanic regions), and investigated how the abundance of these three categories relates to environmental gradients. Most surface assemblages were numerically dominated by a few cosmopolitan “normal‐like” OTUs, yet there was a gradual shift towards assemblages dominated by “logistic” taxa in specific areas with productivity and temperature differing the most from the average conditions in the sampled stations. When we performed the SpAD categorization including additional habitats (deeper layers and particles of varying sizes), the SpAD of many OTUs changed towards fewer “normal‐like” shapes, and OTUs categorized as globally rare in the surface ocean became abundant. This suggests that understanding the mechanisms behind microbial rarity and dominance requires expanding the context of study beyond local communities and single habitats. We show that marine bacterial communities comprise taxa displaying a continuum of SpADs, and that variations in their abundances can be linked to habitat transitions or barriers that delimit the distribution of community members.  相似文献   

14.
Summary One of the most important questions in evolutionary biology is: what orients the evolutionary process? That is, what causes evolution to proceed toward certain developmental trajectories, and hence phenotypes, rather than others? In particular, there has been prolonged controversy over whether the direction of evolution is determined solely by external factors or whether the nature of the ontogenetic process, and the ways in which it can be altered by mutations in developmental genes, may also play a major role. Here, I examine this issue, concentrating on the following: the possible evolutionary orienting role of “developmental bias;” the question of whether selection can and/or will break bias; the extent to which bias is already incorporated in quantitative genetic studies; and ways of approaching the possible role of bias in the origin of evolutionary novelties. Finally, I suggest that developmental bias may provide a focal point for the coming together of conceptual and practical approaches to evo‐devo.  相似文献   

15.
The repeated, independent evolution of traits (convergent evolution) is often attributed to shared environmental selection pressures. However, developmental dependencies among traits can limit the phenotypic variation available to selection and bias evolutionary outcomes. Here, we determine how changes in developmentally correlated traits may impact convergent loss of the tympanic middle ear, a highly labile trait within toads that currently lack adaptive explanation. The middle ear's lability could reflect evolutionary trade‐offs with other skull features under selection, or the middle ear may evolve independently of the rest of the skull, allowing it to be modified by active or passive processes without pleiotropic trade‐offs with other skull features. We compare the skulls of 55 species (39 eared, 16 earless) within the family Bufonidae, spanning six hypothesized independent middle ear transitions. We test whether shared or lineage‐specific changes in skull shape distinguish earless species from eared species and whether earless skulls lack other late‐forming skull bones. We find no evidence for pleiotropic trade‐offs between the middle ear and other skull structures. Instead, middle ear loss in anurans may provide a rare example of developmental independence contributing to evolutionary lability of a sensory system.  相似文献   

16.
In many animal species, variation in reproductive success among individuals has led to the evolution of alternative mating strategies, which in the case of insects can often be correlated with developmental trajectories. In the Wellington tree weta, Hemideina crassidens, males can mature at the 8th, 9th or 10th instar, while females mature at the 10th instar only. A number of morphological attributes including male head and mandible size correlate with final instar number, and as these attributes represent a form of weaponry, they are often used in mate/site guarding and male–male competition. Tenth instar males have larger head/mandible/body sizes and show a conventional (guarder) reproductive strategy, whereas smaller 8th instar males typically show an unconventional (sneaker) strategy. In contrast, 9th instar males are predicted to adopt a “jack‐of‐all‐trades” strategy whereby they can fight or sneak depending context. Here, we tested whether alternative reproductive morphs exhibit strategy‐specific differences in risk‐taking associated with refuge emergence, activity and antipredator behaviour and further, whether these traits correlate to form a behavioural syndrome. We found that tree weta show consistent and repeatable differences in activity and refuge use at the individual level; however, behavioural covariances suggest that only 8th instar males exhibit a behavioural syndrome. That 9th instar males show high plasticity and variance in their gallery‐related behaviours supports the hypothesis that these males are a “jack‐of‐all‐trades.” Contrary to our predictions, antipredator behaviour was not correlated with other traits, and differences in behaviour overall were consistently more pronounced between individuals rather than between male morphs or sexes.  相似文献   

17.
Ernst Mayr proposed a distinction between “proximate”, mechanistic, and “ultimate”, evolutionary, causes of biological phenomena. This dichotomy has influenced the thinking of many biologists, but it is increasingly perceived as impeding modern studies of evolutionary processes, including study of “niche construction” in which organisms alter their environments in ways supportive of their evolutionary success. Some still find value for this dichotomy in its separation of answers to “how?” versus “why?”questions about evolution. But “why is A?” questions about evolution necessarily take the form “how does A occur?”, so this separation is illusory. Moreover, the dichotomy distorts our view of evolutionary causality, in that, contra Mayr, the action of natural selection, driven by genotype-phenotype-environment interactions which constitute adaptations, is no less “proximate” than the biological mechanisms which are altered by naturally selected genetic variants. Mayr’s dichotomy thus needs replacement by more realistic, mechanistic views of evolution. From a mechanistic viewpoint, there is a continuum of adaptations from those evolving as responses to unchanging environmental pressures to those evolving as the capacity for niche construction, and intermediate stages of this can be identified. Some biologists postulate an association of “phenotypic plasticity” (phenotype-environment covariation with genotype held constant) with capacity for niche construction. Both “plasticity” and niche construction comprise wide ranges of adaptive mechanisms, often fully heritable and resulting from case-specific evolution. Association of “plasticity” with niche construction is most likely to arise in systems wherein capacity for complex learning and behavioral flexibility have already evolved.  相似文献   

18.
Mate choice hypotheses usually focus on trait variation of chosen individuals. Recently, mate choice studies have increasingly attended to the environmental circumstances affecting variation in choosers' behavior and choosers' traits. We reviewed the literature on phenotypic plasticity in mate choice with the goal of exploring whether phenotypic plasticity can be interpreted as individual flexibility in the context of the switch point theorem, SPT (Gowaty and Hubbell 2009 ). We found >3000 studies; 198 were empirical studies of within‐sex phenotypic plasticity, and sixteen showed no evidence of mate choice plasticity. Most studies reported changes from choosy to indiscriminate behavior of subjects. Investigators attributed changes to one or more causes including operational sex ratio, adult sex ratio, potential reproductive rate, predation risk, disease risk, chooser's mating experience, chooser's age, chooser's condition, or chooser's resources. The studies together indicate that “choosiness” of potential mates is environmentally and socially labile, that is, induced – not fixed – in “the choosy sex” with results consistent with choosers' intrinsic characteristics or their ecological circumstances mattering more to mate choice than the traits of potential mates. We show that plasticity‐associated variables factor into the simpler SPT variables. We propose that it is time to complete the move from questions about within‐sex plasticity in the choosy sex to between‐ and within‐individual flexibility in reproductive decision‐making of both sexes simultaneously. Currently, unanswered empirical questions are about the force of alternative constraints and opportunities as inducers of individual flexibility in reproductive decision‐making, and the ecological, social, and developmental sources of similarities and differences between individuals. To make progress, we need studies (1) of simultaneous and symmetric attention to individual mate preferences and subsequent behavior in both sexes, (2) controlled for within‐individual variation in choice behavior as demography changes, and which (3) report effects on fitness from movement of individual's switch points.  相似文献   

19.
Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This “song learning” hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54–79%) that requires song‐learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to “a downside of learning” for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability.  相似文献   

20.
Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life‐history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely “a plot of log (variance) on the y‐axis versus log (mean) on the x‐axis, with a reference line added”. This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a “phenotypic variance gradient”, are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号