首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyroptosis is a form of cell death that is uniquely dependent on caspase‐1. Pyroptosis involved in oxidized low‐density lipoprotein (ox‐LDL)‐induced human macrophage death through the promotion of caspase‐1 activation is important for the formation of unstable plaques in atherosclerosis. The mitochondrial outer membrane protein NIX directly interacts with microtubule‐associated protein 1 light chain 3 (LC3). Although we previously showed that NIX‐mediated mitochondrial autophagy is involved in the clearance of damaged mitochondria, how NIX contributes to ox‐LDL‐induced macrophage pyroptosis remains unknown. Here, immunoperoxidase staining Nix expression decreased in human atherosclerosis. When we silenced NIX expression in murine macrophage cell, active caspase‐1, and mature interleukin‐1β expression levels were increased and LC3 was reduced. In addition, LDH release and acridine orange and ethidium bromide staining indicated that damage to macrophage cell membranes induced by ox‐LDL was substantially worse. Moreover, intracellular reactive oxygen species and NLRP3 inflammasome levels increased. Taken together, these results demonstrated that NIX inhibits ox‐LDL‐induced macrophage pyroptosis via autophagy in atherosclerosis.  相似文献   

2.
Atherosclerotic plaque formation is characterized by the persistence of lipid-laden macrophages on the inner walls of arteries. Chronic inflammation and imbalanced macrophage function are likely to play a critical role. Herein, we investigated whether bromodomain-containing protein 7 (Brd7), a member of the bromodomain-containing protein family, regulates atherosclerosis, and if so, which mechanisms are responsible for the process. We found that Brd7 is expressed in mouse atherosclerotic plaques, and mostly in macrophages. Inhibition of Brd7 accelerates atherosclerotic lesion formation in ApoE?/? mice by promoting NF-κB–mediated inflammation. Furthermore, Brd7 inhibition alters the phenotype of macrophages and promotes plaque instability, at least partly via STAT6 signaling. Our data define a previously undescribed role of Brd7 in the development of atherosclerosis.  相似文献   

3.
Endothelial injuries, including cell pyroptosis, are ongoing inflammatory processes with key roles in atherosclerosis development. Our previous report showed that the chemokine CXCL12 and its receptor CXCR7 are associated with the proliferation and angiogenesis of endothelial cells. Nevertheless, the mechanism underlying these effects on atherosclerotic lesions, especially on endothelial dysfunction, remains unknown. Here, we demonstrated that CXCR7 was upregulated in human carotid atherosclerotic plaques, apolipoprotein E knockout (ApoE?/?) mice fed with a high‐fat diet (HFD), and oxidized lipopolysaccharide‐treated (ox‐LDL) human umbilical vein endothelial cells (HUVECs). Further, the activation of CXCR7 reversed ox‐LDL‐induced HUVEC dysfunction, such as migration, tube formation, and cell pyroptosis; all of these protective effects were alleviated by inhibition of CXCR7. The NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasomes were also elevated in human carotid atherosclerotic plaques, ApoE?/? mice fed with HFD, and ox‐LDL‐injured HUVECs by regulation of caspase‐1 and interleukin (IL)‐1β expression. The activation of CXCR7 by TC14012 led to a decrease in atherosclerotic lesions in ApoE?/? mice fed with HFD. TC14012 also inhibited the expression of the NLRP3 inflammasome signaling pathway in vivo. In conclusion, our study suggests that CXCR7 plays an important role in regulating NLRP3 inflammasome‐modulated pyroptosis in HUVECs, providing a potential novel therapy for atherosclerosis.  相似文献   

4.
5.
Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3β in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3β and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE‐deficient mice, demonstrating that CysC deficiency (CysC?/?) in these mice results in reduction of Atg5 and LC3β levels and induction of apoptosis. Third, macrophages isolated from CysC?/? mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7‐oxysterol‐mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol‐mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE‐deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.  相似文献   

6.
Fibroblast growth factor 21 (FGF21) acts as an anti‐atherosclerotic agent. However, the specific mechanisms governing this regulatory activity are unclear. Autophagy is a highly conserved cell stress response which regulates atherosclerosis (AS) by reducing lipid droplet degradation in foam cells. We sought to assess whether FGF21 could inhibit AS by regulating cholesterol metabolism in foam cells via autophagy and to elucidate the underlying molecular mechanisms. In this study, ApoE?/? mice were fed a high‐fat diet (HFD) with or without FGF21 and FGF21 + 3‐Methyladenine (3MA) for 12 weeks. Our results showed that FGF21 inhibited AS in HFD‐fed ApoE?/? mice, which was reversed by 3MA treatment. Moreover, FGF21 increased plaque RACK1 and autophagy‐related protein (LC3 and beclin‐1) expression in ApoE?/? mice, thus preventing AS. However, these proteins were inhibited by LV‐RACK1 shRNA injection. Foam cell development is a crucial determinant of AS, and cholesterol efflux from foam cells represents an important defensive measure of AS. In this study, foam cells were treated with FGF21 for 24 hours after a pre‐treatment with 3MA, ATG5 siRNA or RACK1 siRNA. Our results indicated that FGF21‐induced autophagy promoted cholesterol efflux to reduce cholesterol accumulation in foam cells by up‐regulating RACK1 expression. Interestingly, immunoprecipitation results showed that RACK1 was able to activate AMPK and interact with ATG5. Taken together, our results indicated that FGF21 induces autophagy to promote cholesterol efflux and reduce cholesterol accumulation in foam cells through RACK1‐mediated AMPK activation and ATG5 interaction. These results provided new insights into the molecular mechanisms of FGF21 in the treatment of AS.  相似文献   

7.
8.
Current pharmacological approaches to stabilize nonobstructive rupture-prone atherosclerotic plaques have only partially reduced the incidence of acute coronary syndromes and sudden death. Macrophages in these vulnerable plaques play a pivotal role in plaque destabilization, whereas smooth muscle cells promote plaque stability. In a recent study, we report that implantation of stents eluting everolimus, a mammalian target of rapamycin (mTOR) inhibitor, in atherosclerotic arteries of cholesterol-fed rabbits, led to a marked reduction in macrophage content without altering the amount of smooth muscle cells. Our in vitro studies showed that treatment of macrophages and smooth muscle cells with everolimus induced inhibition of translation of both cell types. However, cell death occurred only in macrophages and was characterized by bulk degradation of long-lived proteins, processing of microtubule associated protein light chain 3 (LC3), and cytoplasmic vacuolization, which are all markers of autophagy. Everolimus-induced autophagy was mediated by mTOR inhibition because cell viability was not affected using tacrolimus, an mTOR independent everolimus-analogue. These results provide proof-of-principle that macrophages in the vascular wall can be selectively cleared via induction of autophagy by mTOR inhibition. Therefore, stent-based delivery of an mTOR inhibitor may be a promising novel strategy for treatment of vulnerable atherosclerotic plaques.  相似文献   

9.
Mitochondrial fission is critically involved in cardiomyocyte apoptosis, which has been considered as one of the leading causes of ischaemia/reperfusion (I/R)‐induced myocardial injury. In our previous works, we demonstrate that aldehyde dehydrogenase‐2 (ALDH2) deficiency aggravates cardiomyocyte apoptosis and cardiac dysfunction. The aim of this study was to elucidate whether ALDH2 deficiency promotes mitochondrial injury and cardiomyocyte death in response to I/R stress and the underlying mechanism. I/R injury was induced by aortic cross‐clamping for 45 min. followed by unclamping for 24 hrs in ALDH2 knockout (ALDH2?/?) and wild‐type (WT) mice. Then myocardial infarct size, cell apoptosis and cardiac function were examined. The protein kinase C (PKC) isoform expressions and their mitochondrial translocation, the activity of dynamin‐related protein 1 (Drp1), caspase9 and caspase3 were determined by Western blot. The effects of N‐acetylcysteine (NAC) or PKC‐δ shRNA treatment on glycogen synthase kinase‐3β (GSK‐3β) activity and mitochondrial permeability transition pore (mPTP) opening were also detected. The results showed that ALDH2?/? mice exhibited increased myocardial infarct size and cardiomyocyte apoptosis, enhanced levels of cleaved caspase9, caspase3 and phosphorylated Drp1. Mitochondrial PKC‐ε translocation was lower in ALDH2?/? mice than in WT mice, and PKC‐δ was the opposite. Further data showed that mitochondrial PKC isoform ratio was regulated by cellular reactive oxygen species (ROS) level, which could be reversed by NAC pre‐treatment under I/R injury. In addition, PKC‐ε inhibition caused activation of caspase9, caspase3 and Drp1Ser616 in response to I/R stress. Importantly, expression of phosphorylated GSK‐3β (inactive form) was lower in ALDH2?/? mice than in WT mice, and both were increased by NAC pre‐treatment. I/R‐induced mitochondrial translocation of GSK‐3β was inhibited by PKC‐δ shRNA or NAC pre‐treatment. In addition, mitochondrial membrane potential (?Ψm) was reduced in ALDH2?/? mice after I/R, which was partly reversed by the GSK‐3β inhibitor (SB216763) or PKC‐δ shRNA. Collectively, our data provide the evidence that abnormal PKC‐ε/PKC‐δ ratio promotes the activation of Drp1 signalling, caspase cascades and GSK‐3β‐dependent mPTP opening, which results in mitochondrial injury‐triggered cardiomyocyte apoptosis and myocardial dysfuction in ALDH2?/? mice following I/R stress.  相似文献   

10.
Previous evidence has indicated a beneficial role for aldehyde dehydrogenase 2 (ALDH2) in suppressing atherosclerotic plaque progression and instability. However, the underlying mechanism remains somewhat elusive. This study was designed to examine the effect of ALDH2 deficiency on high-cholesterol diet-induced atherosclerotic plaque progression and plaque vulnerability in atherosclerosis-prone ApoE knockout (ApoE?/?) mice with a focus on foam cell formation in macrophages and senescence of vascular smooth muscle cells (VSMCs). Serum lipid profile, plaque progression, and plaque vulnerability were examined in ApoE?/? and ALDH2/ApoE double knockout (ALDH2?/?ApoE?/?) mice after high-cholesterol diet intake for 8 weeks. ALDH2 deficiency increased the serum levels of triglycerides while it decreased levels of total cholesterol and high-density lipoprotein cholesterol. Unexpectedly, ALDH2 deficiency reduced the plaque area by 58.9% and 37.5% in aorta and aortic sinus, respectively. Plaque instability was aggravated by ALDH2 deficiency along with the increased necrotic core size, decreased collagen content, thinner fibrous cap area, decreased VSMC content, and increased macrophage content. In atherosclerotic lesions, ALDH2 protein was located in both macrophages and VSMCs. Further results revealed downregulated ALDH2 expression in aorta of aged ApoE?/? mice compared with young mice. However, in vitro study suggested that ALDH2 expression was upregulated in bone marrow-derived macrophages (BMDMs) with an opposite effect in VSMCs following 80 μg/ml oxidized low-density lipoprotein (oxLDL) treatment. Interestingly, ALDH2 deficiency displayed little effect in oxLDL-induced foam cell formation from BMDMs, while ALDH2 knockdown by siRNA and ALDH2 overexpression by lentivirus infection promoted and retarded oxLDL-induced VSMC senescence, respectively. Mechanistically, ALDH2 mitigated oxLDL-induced overproduction of mitochondrial reactive oxygen species (mROS) and activation of downstream p53/p21/p16 pathway. Clearance of mROS by mitoTEMPO significantly reversed the promotive effect of ALDH2 knockdown on VSMC senescence. Taken together, our data revealed that ALDH2 deficiency suppressed atherosclerotic plaque area while facilitating plaque instability possibly through accelerating mROS-mediated VSMC senescence.This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   

11.
Clinical complications associated with atherosclerotic plaques arise from luminal obstruction due to plaque growth or destabilization leading to rupture. Tumour necrosis factor ligand superfamily member 12 (TNFSF12) also known as TNF-related weak inducer of apoptosis (TWEAK) is a proinflammatory cytokine that participates in atherosclerotic plaque development, but its role in plaque stability remains unclear. Using two different approaches, genetic deletion of TNFSF12 and treatment with a TWEAK blocking mAb in atherosclerosis-prone mice, we have analysed the effect of TWEAK inhibition on atherosclerotic plaques progression and stability. Mice lacking both TNFSF12 and Apolipoprotein E (TNFSF12−/−ApoE−/−) exhibited a diminished atherosclerotic burden and lesion size in their aorta. Advanced atherosclerotic plaques of TNFSF12−/−ApoE−/− or anti-TWEAK treated mice exhibited an increase collagen/lipid and vascular smooth muscle cell/macrophage ratios compared with TNFSF12+/+ApoE−/− control mice, reflecting a more stable plaque phenotype. These changes are related with two different mechanisms, reduction of the inflammatory response (chemokines expression and secretion and nuclear factor kappa B activation) and decrease of metalloproteinase activity in atherosclerotic plaques of TNFSF12−/−ApoE−/−. A similar phenotype was observed with anti-TWEAK mAb treatment in TNFSF12+/+ApoE−/− mice. Brachiocephalic arteries were also examined since they exhibit additional features akin to human atherosclerotic plaques associated with instability and rupture. Features of greater plaque stability including augmented collagen/lipid ratio, reduced macrophage content, and less presence of lateral xanthomas, buried caps, medial erosion, intraplaque haemorrhage and calcium content were present in TNFSF12−/−ApoE−/− or anti-TWEAK treatment in TNFSF12+/+ApoE−/− mice. Overall, our data indicate that anti-TWEAK treatment has the capacity to diminish proinflamatory response associated with atherosclerotic plaque progression and to alter plaque morphology towards a stable phenotype.  相似文献   

12.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

13.
Swainsonine (SW) is an indolizidine alkaloid isolated from a number of poisonous plants. We have previously reported that SW inhibited luteal cell progesterone production by inducing caprine luteal cell apoptosis in vitro; however, the molecular mechanism of this phenomenon remains unclear. In this study, SW‐treated luteal cells showed apoptosis characteristics, including nuclear fragmentation, DNA ladder formation, and phosphatidylserine externalization. Further studies showed that SW activated caspase‐9 and caspase‐3, which subsequently cleaved poly(ADP‐ribose) polymerase. SW also increased in Bax/BcL‐2 ratios, promoted Bax translocation from the cytosol to mitochondria, and triggered the release of cytochrome c from mitochondria into the cytoplasm. However, Fas and Fas ligand induction or caspase‐8 activity did not appear any significant changes. Additional analysis also showed that pan‐caspase inhibitor, caspase‐9 inhibitor, or caspase‐3 inhibitor almost completely protected the cells from SW‐induced apoptosis, but not caspase‐8 inhibitor. Overall, these data demonstrated that SW induced luteal cells apoptosis through a mitochondrial‐mediated caspase‐dependent pathway.  相似文献   

14.
Our research aims to evaluate the function of the STAMP2 gene, an important trigger in insulin resistance (IR), and explore its role in macrophage apoptosis in diabetic atherosclerotic vulnerable plaques. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. The level of STAMP2 was measured by RT‐PCR and Western blot. The plaque area, lipid and collagen content of brachiocephalic artery plaques were measured by histopathological analyses, and the macrophage apoptosis was measured by TUNEL. Correlation of STAMP2/Akt signaling pathway and macrophage apoptosis was validated by Ad‐STAMP2 transfection and STAMP2 siRNA inhibition. The diabetic mice showed typical features of IR, hyperglycaemia. Overexpression of STAMP2 ameliorated IR and decreased serum glucose level. In brachiocephalic lesions, lipid content, macrophage quantity and the vulnerability index were significantly decreased by overexpression of STAMP2. Moreover, the numbers of apoptotic cells and macrophages in lesions were both significantly decreased. In vitro, both mRNA and protein expressions of STAMP2 were increased under high glucose treatment. P‐Akt was highly expressed and caspase‐3 was decreased after overexpression of STAMP2. However, expression of p‐Akt protein was decreased and caspase‐3 was increased when STAMP2 was inhibited by siRNA. STAMP2 overexpression could exert a protective effect on diabetic atherosclerosis by reducing IR and diminishing macrophage apoptosis.  相似文献   

15.
We recently demonstrated that resveratrol induces caspase-dependent apoptosis in multiple cancer cell types. Whether apoptosis is also regulated by other cell death mechanisms such as autophagy is not clearly defined. Here we show that inhibition of autophagy enhanced resveratrol-induced caspase activation and apoptosis. Resveratrol inhibited colony formation and cell proliferation in multiple cancer cell types. Resveratrol treatment induced accumulation of LC3-II, which is a key marker for autophagy. Pretreatment with 3-methyladenine (3-MA), an autophagy inhibitor, increased resveratrol-mediated caspase activation and cell death in breast and colon cancer cells. Inhibition of autophagy by silencing key autophagy regulators such as ATG5 and Beclin-1 enhanced resveratrol-induced caspase activation. Mechanistic analysis revealed that Beclin-1 did not interact with proapoptotic proteins Bax and Bak; however, Beclin-1 was found to interact with p53 in the cytosol and mitochondria upon resveratrol treatment. Importantly, resveratrol depleted ATPase 8 gene, and thus, reduced mitochondrial DNA (mtDNA) content, suggesting that resveratrol induces damage to mtDNA causing accumulation of dysfunctional mitochondria triggering autophagy induction. Together, our findings indicate that induction of autophagy during resveratrol-induced apoptosis is an adaptive response.  相似文献   

16.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   

17.
18.
The Src family kinases (SFK) are a group of signalling molecules with important regulatory functions in inflammation and haemostasis. Leucocytes and platelets express multiple isoforms of the SFKs. Previous studies used broad‐spectrum pharmacological inhibitors, or murine models deficient in multiple SFK isoforms, to demonstrate the functional consequences of deficiencies in SFK signalling. Here, we hypothesized that individual SFK operate in a non‐redundant fashion in the thrombo‐inflammatory recruitment of monocyte during atherosclerosis. Using in vitro adhesion assays and single SFK knockout mice crossed with the ApoE?/? model of atherosclerosis, we find that SFK signalling regulates platelet‐dependent recruitment of monocytes. However, loss of a single SFK, Fgr or Lyn, reduced platelet‐mediated monocyte recruitment in vitro. This translated into a significant reduction in the burden of atherosclerotic disease in Fgr?/?/ApoE?/? or Lyn?/?/ApoE?/? animals. SFK signalling is not redundant in thrombo‐inflammatory vascular disease and individual SFK may represent targets for therapeutic intervention.  相似文献   

19.
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE?/? mice. In vitro, Rb1 treatment promoted the expression of arginase‐I (Arg‐I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin‐4 (IL‐4) and interleukin‐13 (IL‐13) secretion in supernatant and promoted STAT6 phosphorylation. IL‐4 and/or IL‐13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up‐regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP‐9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti‐inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL‐4 and/or IL‐13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis.  相似文献   

20.
Modulating inflammation by targeting IL-1β reduces recurrent athero-thrombotic cardiovascular events without lipid lowering. This presents an opportunity to explore other pathways associated with the IL-1β signaling cascade to modulate the inflammatory response post-myocardial infarction (MI). IL-7 is a mediator of the inflammatory pathway involved in monocyte trafficking into atherosclerotic plaques and levels of IL-7 have been shown to be elevated in patients with acute MI. Recurrent athero-thrombotic events are believed to be mediated in part by index MI-induced exacerbation of inflammation in atherosclerotic plaques. The objective of the study was to assess the feasibility of IL-7R blockade to modulate atherosclerotic plaque inflammation following acute MI in ApoE?/- mice. Mice were fed Western diet for 12 weeks and then subjected to coronary occlusion to induce an acute MI. IL-7 expression was determined using qRT-PCR and immuno-staining, and IL-7R was assessed using flow cytometry. Plaque inflammation was evaluated using immunohistochemistry. IL-7R blockade was accomplished with monoclonal antibody to IL-7R. IL-7 mRNA expression was significantly increased in the cardiac tissue of mice subjected to MI but not in controls. IL-7 staining was observed in the coronary artery. Plaque macrophage and lipid content were significantly increased after MI. IL-7R antibody treatment but not control IgG significantly reduced macrophage and lipid content in atherosclerotic plaques. The results show that IL-7R antibody treatment reduces monocyte/macrophage and lipid content in the atherosclerotic plaque following MI suggesting a potential new target to mitigate increased plaque inflammation post-MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号