首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cytotoxic T lymphocyte antigen 4 (CTLA4) and programmed cell death protein 1 (PD‐1) are immune checkpoint proteins expressed in T cells. Although CTLA4 expression was found in multiple tumours including non‐small cell lung cancer (NSCLC) tissues and cells, its function in tumour cells is unknown. Recently, PD‐1 was found to be expressed in melanoma cells and to promote tumorigenesis. We found that CTLA4 was expressed in a subset of NSCLC cell lines and in a subgroup of cancer cells within the lung cancer tissues. We further found that in NSCLC cells, anti‐CTLA4 antibody can induce PD‐L1 expression, which is mediated by CTLA4 and the EGFR pathway involving phosphorylation of MEK and ERK. In CTLA4 knockout cells, EGFR knockout cells or in the presence of an EGFR tyrosine kinase inhibitor, anti‐CTLA4 antibody was not able to induce PD‐L1 expression in NSCLC cells. Moreover, anti‐CTLA4 antibody promoted NSCLC cell proliferation in vitro and tumour growth in vivo in the absence of adaptive immunity. These results suggest that tumour cell‐intrinsic CTLA4 can regulate PD‐L1 expression and cell proliferation, and that anti‐CTLA4 antibody, by binding to the tumour cell‐intrinsic CTLA4, may result in the activation of the EGFR pathway in cancer cells.  相似文献   

2.
3.
Non–small‐cell lung cancer (NSCLC) is the most common cause of death from cancer worldwide. MicroRNAs (miRNAs) are a group of important regulators in NSCLC, including miR‐198. However, the underlying molecular mechanisms of miR‐198 involvement in intrinsic resistance to radiotherapy in NSCLC remain to be elucidated. In this study, to investigate the clinical significance of miR‐198 in NSCLC in relation to the response to radiotherapy, we determined the expression patterns of miR‐198 between responders and nonresponders after 2 months of radiotherapy and found that decreased expressions of miR‐198 were associated with radiotherapy resistance. In addition, we altered the endogenous miR‐198 using mimics or inhibitors to examine the effects of miR‐198 on 4‐Gy–irradiated A549 and SPCA‐1 cells in vitro. Upregulating miR‐198 was shown to inhibit cell proliferation, migration, and invasion and induce apoptosis. MiR‐198 inhibition produced a reciprocal result. PHA665752, a selective small‐molecule c‐Met inhibitor, potently inhibited hepatocyte growth factor (HGF)‐stimulated and constitutive c‐Met phosphorylation and rescued 4‐Gy–irradiated A549 and SPCA‐1 cells from miR‐198 inhibition. Most importantly, we established tumor xenografts of 4‐Gy–irradiated A549 and SPCA‐1 cells in nude mice and found that miR‐198 could suppress tumor formation. Hence, our data delineates the molecular pathway by which miR‐198 inhibits NSCLC cellular proliferation and induces apoptosis following radiotherapy, providing a novel target aimed at improving the radiotherapeutic response in NSCLC.  相似文献   

4.
DYRK1A is considered a potential cancer therapeutic target, but the role of DYRK1A in NSCLC oncogenesis and treatment requires further investigation. In our study, high DYRK1A expression was observed in tumour samples from patients with lung cancer compared with normal lung tissues, and the high levels of DYRK1A were related to a reduced survival time in patients with lung cancer. Meanwhile, the DYRK1A inhibitor harmine could suppress the proliferation of NSCLC cells compared to that of the control. As DYRK1A suppression might be effective in treating NSCLC, we next explored the possible specific molecular mechanisms that were involved. We showed that DYRK1A suppression by siRNA could suppress the levels of EGFR and Met in NSCLC cells. Furthermore, DYRK1A siRNA could inhibit the expression and nuclear translocation of STAT3. Meanwhile, harmine could also regulate the STAT3/EGFR/Met signalling pathway in human NSCLC cells. AZD9291 is effective to treat NSCLC patients with EGFR‐sensitivity mutation and T790 M resistance mutation, but the clinical efficacy in patients with wild‐type EGFR remains modest. We showed that DYRK1A repression could enhance the anti‐cancer effect of AZD9291 by inducing apoptosis and suppressing cell proliferation in EGFR wild‐type NSCLC cells. In addition, harmine could enhance the anti‐NSCLC activity of AZD9291 by modulating STAT3 pathway. Finally, harmine could enhance the anti‐cancer activity of AZD9291 in primary NSCLC cells. Collectively, targeting DYRK1A might be an attractive target for AZD9291 sensitization in EGFR wild‐type NSCLC patients.  相似文献   

5.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

6.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

7.
Lung cancer is the leading cause of cancer‐related death globally, with non–small‐cell lung cancer (NSCLC) being the predominant subtype. Overall survival remains low for NSCLC patients, and novel targets are needed to improve outcome. Raf‐1 is a key component of the Ras/Raf/MEK signalling pathway, but its role and downstream targets in NSCLC are not completely understood. Our previous study indicated a possible correlation between Raf‐1 levels and ribosomal protein S6 kinase (p70S6K) function. In this study, we aimed to investigate whether p70S6K is a downstream target of Raf‐1 in NSCLC. Raf‐1 was silenced in NSCLC cell lines by using small hairpin RNA, and Raf‐1 and p70S6K protein levels were measured via Western blot. p70S6K was then overexpressed following Raf‐1 knock‐down; then, cell proliferation, apoptosis and the cell cycle in NSCLC cell lines were examined. Tumour xenografts with NSCLC cells were then transplanted for in vivo study. Tumours were measured and weighed, and Raf‐1 and p70S6K expression, cell proliferation and apoptosis were examined in tumour tissues by Western blot, Ki‐67 staining and TUNEL staining, respectively. When Raf‐1 was silenced, p70S6K protein levels were markedly decreased in the A549 and H1299 NSCLC cell lines. A significant decrease in NSCLC cell proliferation, a profound increase in apoptosis and cell cycle arrest were observed in vitro following Raf‐1 knock‐down. Overexpression of p70S6K after Raf‐1 depletion effectively reversed these effects. Xenograft studies confirmed these results in vivo. In conclusion, Raf‐1 targets p70S6K as its downstream effector to regulate NSCLC tumorigenicity, making Raf‐1/p70S6K signalling a promising target for NSCLC treatment.  相似文献   

8.
Human non‐small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Estrogenic signals have been suggested to be important for the growth and metastasis of NSCLC cells. Our present data showed that estrogen‐related receptor alpha (ERRα), while not ERRβ or ERRγ, was significantly elevated in NSCLC cell lines as compared with that in normal bronchial epithelial cell line BEAS‐2B. The expression of ERRα in clinical NSCLC tissues was significantly greater than that in their matched normal adjacent tissues. Over expression of ERRα can trigger the proliferation, migration, and invasion of NSCLC cells, while si‐ERRα or ERRα inhibitor showed opposite effects. ERRα can increase the mRNA and protein expression of IL‐6, while not IL‐8, IL‐10, IL‐22, VEGF, TGF‐β, or TNF‐α, in NSCLC cells. Silence of IL‐6 attenuated ERRα induced proliferation and cell invasion. Furthermore, our data revealed the inhibition of NF‐κB, while not ERK1/2 or PI3K/Akt, abolished ERRα induced production of IL‐6. This might be due to that overexpression of ERRα can increase the expression and nuclear translocation of p65 in NSCLC cells. Collectively, our data showed that activation of NF‐κB/IL‐6 is involved in ERRα induced migration and invasion of NSCLC cells. It suggested that ERRα might be a potential target for NSCLC treatment.  相似文献   

9.
Lung cancer is the most common type of malignancy and one of the leading causes of cancer‐related deaths in the world. Non‐small cell lung carcinomas (NSCLC) account for 85% cases of lung cancer. Sanguinarine (SNG) is a benzophenanthridine alkaloid isolated from plants of the Papaveraceae family that possess diverse biological activities. SNG exhibits antitumor effects in several cancer cells. However, the effects of SAN on NSCLC proliferation, invasion, and migration and the mechanisms remain to be clarified. We showed that SNG concentration‐ and time‐dependently decreased the cell proliferation, viability, and induced a marked increase in cell death in A549 cells. SNG inhibited invasion and migration and induced S phase cell cycle arrest and apoptosis. SNG resulted in a significant increase of E‐cadherin expression and a marked decrease of the expression of N‐cadherin, Vimentin, Smad2/3, and Snail and the phosphorylation of Smad2. SNG increased Fas‐associated factor 1 (FAF1) expression and upregulation of FAF1 inhibited cell proliferation, invasion, and migration and induced cell cycle arrest and apoptosis in NSCLC cells. Knockdown of FAF1 suppressed SNG‐induced inhibition of cell proliferation, invasion, and migration and induction of cell cycle arrest and apoptosis in NSCLC cells. SNG also inhibited implanted tumor growth and increased FAF1 expression in tumors in vivo. Our findings highlight FAF1 as a novel therapeutic target and provide a new insight in the potential use of SNG for the inhibition of NSCLC.  相似文献   

10.
Long noncoding RNAs (lncRNAs) are involved in the pathology of various tumours, including non‐small cell lung cancer (NSCLC). However, the underlying molecular mechanisms of their specific association with NSCLC have not been fully elucidated. Here, we report that a cytoplasmic lncRNA, DUXAP9‐206 is overexpressed in NSCLC cells and closely related to NSCLC clinical features and poor patient survival. We reveal that DUXAP9‐206 induced NSCLC cell proliferation and metastasis by directly interacting with Cbl‐b, an E3 ubiquitin ligase, and reducing the degradation of epidermal growth factor receptor (EGFR) and thereby augmenting EGFR signaling in NSCLC. Notably, correlations between DUXAP9‐206 and activated EGFR signaling were also validated in NSCLC patient specimens. Collectively, our findings reveal the novel molecular mechanisms of DUXAP9‐206 in mediating the progression of NSCLC and DUXAP9‐206 may serve as a potential target for NSCLC therapy.  相似文献   

11.
Persistently activated IL‐6/STAT3 pathway promotes acquired resistance to targeted therapy with epidermal growth factor receptor‐tyrosine kinase inhibitors (EGFR‐TKIs) in non–small‐cell lung cancer (NSCLC) treatment. miR‐206 has been verified to be dysregulated and plays as a negative regulator in lung cancer. However, whether miR‐206 may overcome IL6‐induced gefitinib resistance in EGFR‐mutant lung cancer remains elusive. In this study, we investigated the role of miR‐206 in IL6‐induced gefitinib‐resistant EGFR‐mutated lung cancer cell lines. We showed that forced miR‐206 expression restored gefitinib sensitivity in IL6‐induced gefitinib‐resistant EGFR‐mutant lung cancer cells by inhibiting IL6/JAK1/STAT3 pathway. Specifically, mechanistic investigations revealed that miR‐206 blocked IL‐6/STAT3 signalling via directly targeting the 3'‐UTR of intracellular IL‐6 messenger RNA. Moreover, IL‐6 induced miR‐206 down‐regulation by reducing the cropping process of primary miR‐206 (pri‐miR‐206) into the Drosha/DGCR8 complex. Taken together, our findings reveal a direct role of miR‐206 in regulating IL‐6/STAT3 pathway and contrarily activated IL‐6/STAT3 signalling mediates the miR‐206 maturation process in gefitinib‐resistant EGFR‐mutant lung cancer cells.  相似文献   

12.
Lung cancer is the most common incident cancer, with a high mortality worldwide, and non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of cases. Numerous studies have shown that the aberrant expression of microRNAs (miRNAs) is associated with the development and progression of cancers. However, the clinical significance and biological roles of most miRNAs in NSCLC remain elusive. In this study, we identified a novel miRNA, miR‐34b‐3p, that suppressed NSCLC cell growth and investigated the underlying mechanism. miR‐34b‐3p was down‐regulated in both NSCLC tumour tissues and lung cancer cell lines (H1299 and A549). The overexpression of miR‐34b‐3p suppressed lung cancer cell (H1299 and A549) growth, including proliferation inhibition, cell cycle arrest and increased apoptosis. Furthermore, luciferase reporter assays confirmed that miR‐34b‐3p could bind to the cyclin‐dependent kinase 4 (CDK4) mRNA 3′‐untranslated region (3′‐UTR) to suppress the expression of CDK4 in NSCLC cells. H1299 and A549 cell proliferation inhibition is mediated by cell cycle arrest and apoptosis with CDK4 interference. Moreover, CDK4 overexpression effectively reversed miR‐34‐3p‐repressed NSCLC cell growth. In conclusion, our findings reveal that miR‐34b‐3p might function as a tumour suppressor in NSCLC by targeting CDK4 and that miR‐34b‐3p may, therefore, serve as a biomarker for the diagnosis and treatment of NSCLC.  相似文献   

13.
We previously reported and revised the nasopharyngeal epithelium specific protein CCDC19 and identified it as a potential tumour suppressor in nasopharyngeal carcinoma. The purpose of this study was to investigate the involvement of CCDC19 in the pathogenesis of human non‐small cell lung cancers (NSCLC). Down‐regulated CCDC19 expression was observed in NSCLC tissues and cells compared to normal tissues. However, reduced protein expression did not correlate with the status of NSCLC progression. Instead, we observed that patients with lower CCDC19 expression had a shorter overall survival than did patients with higher CCDC19 expression. Lentiviral‐mediated CCDC19 overexpression significantly suppressed cell proliferation and cell cycle transition from G1 to S and G2 phases in NSCLC cells. Knocking down CCDC19 expression significantly restored the ability of cell growth in CCDC19 overexpressing NSCLC cells. Mechanistically CCDC19 functions as a potential tumour suppressor by stimulating miR‐184 suppression of C‐Myc thus blocking cell growth mediated by the PI3K/AKT/C‐Jun pathway. Our studies are the first to demonstrate that reduced expression of CCDC19 is an unfavourable factor in NSCLC.  相似文献   

14.
15.
It has been reported that miR‐376a is involved in the formation and progression of several types of cancer. However, the expression and function of miR‐376a is still unknown in non‐small cell lung carcinomas (NSCLC). In this study, the expression of miR‐376a in NSCLC tissues and cell lines were examined by real‐time PCR, the effects of miR‐376a on cell proliferation, apoptosis and invasion were evaluated in vitro. Luciferase reporter assay was performed to identify the targets of miR‐376a. The results showed that miR‐376a was significantly downregulated in NSCLC tissues and cell lines. Restoration of miR‐376a in NSCLC cell line A549 significantly inhibited cell proliferation, increased cell apoptosis and suppressed cell invasion, compared with control‐transfected A549 cells. Luciferase reporter assay showed that c‐Myc, an oncogene that regulating cell survival, angiogenesis and metastasis, was a direct target of miR‐376a. Over‐expression of miR‐376a decreased the mRNA and protein levels of c‐Myc in A549 cells. In addition, upregulation of c‐Myc inhibited miR‐376a‐induced inhibition of cell proliferation and invasion in A549 cells. Therefore, our results indicate a tumor suppressor role of miR‐376a in NSCLC by targeting c‐Myc. miR‐376a may be a promising therapeutic target for NSCLC.  相似文献   

16.
17.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

18.
Cancer stem cells (CSCs) play an important role in cancer treatment resistance and disease progression. Identifying an effective anti‐CSC agent may lead to improved disease control. We used CSC‐associated gene signatures to identify drug candidates that may inhibit CSC growth by reversing the CSC gene signature. Thiostrepton, a natural cyclic oligopeptide antibiotic, was the top‐ranked candidate. In non–small‐cell lung cancer (NSCLC) cells, thiostrepton inhibited CSC growth in vitro and reduced protein expression of cancer stemness markers, including CD133, Nanog and Oct4A. In addition, metastasis‐associated Src tyrosine kinase signalling, cell migration and epithelial‐to‐mesenchymal transition (EMT) were all inhibited by thiostrepton. Mechanistically, thiostrepton treatment led to elevated levels of tumour suppressor miR‐98. Thiostrepton combined with gemcitabine synergistically suppressed NSCLC cell growth and induced apoptosis. The inhibition of NSCLC tumours and CSC growth by thiostrepton was also demonstrated in vivo. Our findings indicate that thiostrepton, an established drug identified in silico, is an inhibitor of CSC growth and a potential enhancer of chemotherapy in NSCLC.  相似文献   

19.
The application of tyrosine kinase inhibitors (TKIs) to the epidermal growth factor receptor (EGFR) has been proven to be highly effective for non‐small‐cell lung cancer (NSCLC). However, patients often evolve into acquired resistance. The secondary mutations in EGFR account for nearly half of the acquired resistance. While the remaining 50% of patients exhibit tolerance to EGFR‐TKIs with unclear mechanism(s). Cylindromatosis (CYLD), a deubiquitinase, functions as a tumor suppressor to regulate cell apoptosis, proliferation, and immune response, and so on. The role of CYLD in NSCLC EGFR‐TKI resistance remains elusive. Here, we found CYLD was upregulated in PC‐9 cells, whereas downregulated in PC‐9 acquired gefitinib‐resistant (PC‐9/GR) cells in response to the treatment of gefitinib, which is consistent with the results in the Gene Expression Omnibus database. Overexpression of CYLD promoted a more apoptotic death ratio in PC‐9/GR cells than that in PC‐9 cells. In addition, silencing the expression of CYLD resulted in an increase of the expression level of interleukin‐6, transforming growth factor‐β and tumor necrosis factor‐α, which may contribute to acquired resistance of PC‐9 cells to gefitinib. Taken together, our data in vitro demonstrate that PC‐9/GR cells downregulated CYLD expression, enhanced subsequent CYLD‐dependent antiapoptotic capacity and inflammatory response, which may provide a possible target for acquired gefitinib‐resistant treatment in NSCLC.  相似文献   

20.
Sip1/tuftelin‐interacting protein (STIP), a multidomain nuclear protein, is a novel factor associated with the spliceosome, yet its role and molecular function in cancer remain unknown. In this study, we show, for the first time, that STIP is overexpressed in non‐small cell lung cancer (NSCLC) tissues compared to adjacent normal lung tissues. The depletion of endogenous STIP inhibited NSCLC cell proliferation in vitro and in vivo, caused cell cycle arrest and induced apoptosis. Cell cycle arrest at the G2/M phase was associated with the expression and activity of the cyclin B1‐CDK1 (cyclin‐dependent kinase 1) complex. We also provide evidence that STIP knockdown induced apoptosis by activating both caspase‐9 and caspase‐3 and by altering the Bcl‐2/Bax expression ratio. RNA sequencing data indicated that the MAPK mitogen‐activated protein kinases, Wnt, PI3K/AKT, and NF‐κB (nuclear factor kappa‐light‐chain‐enhancer of activated B cells) signalling pathways might be involved in STIP‐mediated tumour regulation. Collectively, these results suggest that STIP may be a novel potential diagnostic and therapeutic target for NSCLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号