首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In birds with asynchronous hatching, hatching order is an important factor in determining offspring phenotype. Many previous studies have demonstrated that later‐hatched offspring show reduced growth and survival during development. However, few studies have followed individuals from hatching to adulthood to test whether the effects of hatching order persist into later life. Here, we explore patterns of hatching order and fitness‐related traits in the Pukeko Porphyrio melanotus melanotus, a cooperatively breeding bird that lives in stable social groups that form linear dominance hierarchies. Pukeko groups sometimes contain two breeding females that lay eggs in the same nest (joint‐laying). Thus, competition between nest‐mates can influence the relative fitness of each laying female. We show that in both single‐clutch and joint‐clutch nests, earlier‐hatched Pukeko chicks grow faster and survive better than later‐hatched brood‐mates. Moreover, earlier‐hatched chicks achieve higher dominance ranks as adults, making this study one of the first to find a relationship between hatching order and adult dominance in wild birds. Finally, we show that in groups with two breeding females, the chicks of the primary female hatch earlier than the chicks of the secondary female. As a result, the offspring of the primary female may be at a competitive advantage, which could have important implications for social dynamics in this species.  相似文献   

2.
Pathogen‐mediated selection is thought to maintain the extreme diversity in the major histocompatibility complex (MHC) genes, operating through the heterozygote advantage, rare‐allele advantage and fluctuating selection mechanisms. Heterozygote advantage (i.e. recognizing and binding a wider range of antigens than homozygotes) is expected to be more detectable when multiple pathogens are considered simultaneously. Here, we test whether MHC diversity in a wild population of European badgers (Meles meles) is driven by pathogen‐mediated selection. We examined individual prevalence (infected or not), infection intensity and co‐infection of 13 pathogens from a range of taxa and examined their relationships with MHC class I and class II variability. This population has a variable, but relatively low, number of MHC alleles and is infected by a variety of naturally occurring pathogens, making it very suitable for the investigation of MHC–pathogen relationships. We found associations between pathogen infections and specific MHC haplotypes and alleles. Co‐infection status was not correlated with MHC heterozygosity, but there was evidence of heterozygote advantage against individual pathogen infections. This suggests that rare‐allele advantages and/or fluctuating selection, and heterozygote advantage are probably the selective forces shaping MHC diversity in this species. We show stronger evidence for MHC associations with infection intensity than for prevalence and conclude that examining both pathogen prevalence and infection intensity is important. Moreover, examination of a large number and diversity of pathogens, and both MHC class I and II genes (which have different functions), provide an improved understanding of the mechanisms driving MHC diversity.  相似文献   

3.
Parasite transmission strategies strongly impact host–parasite co‐evolution and virulence. However, studies of vector‐borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high‐throughput sequencing to develop microsatellites for malaria‐like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph‐specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector‐mediated parent‐to‐offspring transmission. The conditions for such ‘quasi‐vertical’ transmission may be common and could suppress the evolution of pathogen virulence.  相似文献   

4.
The environment shapes host–parasite interactions, but how environmental variation affects the diversity and composition of parasite‐defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Investigating MHC‐parasite associations across heterogeneous landscapes may elucidate the role of spatially fluctuating selection in the maintenance of high levels of genetic variation at the MHC. We studied patterns of association between an avian haemosporidian blood parasite and the MHC of rufous‐collared sparrows (Zonotrichia capensis) that inhabit environments with widely varying haemosporidian infection prevalence in the Peruvian Andes. MHC diversity peaked in populations with high infection prevalence, although intra‐individual MHC diversity was not associated with infection status. MHC nucleotide and protein sequences associated with infection absence tended to be rare, consistent with negative frequency‐dependent selection. We found an MHC variant associated with a ~26% decrease in infection probability at middle elevations (1501–3100 m) where prevalence was highest. Several other variants were associated with a significant increase in infection probability in low haemosporidian prevalence environments, which can be interpreted as susceptibility or quantitative resistance. Our study highlights important challenges in understanding MHC evolution in natural systems, but may point to a role of negative frequency‐dependent selection and fluctuating spatial selection in the evolution of Z. capensis MHC.  相似文献   

5.
Cody J. Dey  James S. Quinn 《Ibis》2017,159(4):725-733
Intra‐brood competition can influence a variety of fitness‐related traits in birds. Previous research on the joint‐nesting Pūkeko Porphyrio melanotus melanotus, a New Zealand subspecies of Australasian Swamphen, showed that chicks that hatched earlier in a brood tended to grow faster, were more likely to survive and had higher dominance status as adults than later hatched nest‐mates. However, this finding could be due to changes in offspring sex ratio across hatch order (e.g. if males tend to hatch earlier), which was not previously examined because of methodological challenges associated with sexing nestling Pūkeko. Here, we report a useful PCR‐based genetic marker to determine the sex of Pūkeko. We then used new sex‐specific data to re‐examine patterns of offspring growth, survival and dominance. We found that the sex of offspring does not account for the hatching‐order patterns related to social dominance, growth or survival. Furthermore, changes in offspring sex ratio across hatching‐order were negligible and offspring sex ratios did not differ significantly between the primary female and secondary female broods (in joint‐clutch nests), or when comparing primary female and single female broods. We found no clear evidence for sex ratio bias according to hatching‐order and conclude that hatching‐order and not offspring sex explain patterns of growth, survivorship and adult dominance in Pūkeko.  相似文献   

6.
Studying the genetic basis of host–parasite interactions represents an outstanding opportunity to observe eco‐evolutionary processes. Established candidates for such studies in vertebrates are immunogenes of the major histocompatibility complex (MHC). The MHC has been reported to reach high intra‐ and interindividual diversity, and a diverse MHC might be advantageous when facing infections from multiple parasites. However, other studies indicated that individuals with an intermediate number of MHC alleles are less infected with parasites or have other fitness advantages. In this study, we assessed the optimal number of MHC alleles in the blunt‐head cichlid Tropheus moorii from Lake Tanganyika. We investigated the influence of the interindividual variation in number of MHC length variants on parasite infection and body condition, measured by the amount of perivisceral fat reserves. Surprisingly, there was no correlation between parasite infection and number of MHC length variants or perivisceral fat deposits. However, the individual number of MHC length variants significantly correlated with the amount of perivisceral fat deposits in males, suggesting that male individuals with an intermediate number of alleles might be able to use their fat reserves more efficiently.  相似文献   

7.
Climate change will strongly impact aquatic ecosystems particularly in arid and semi‐arid regions. Fish–parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species’ adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio‐temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio‐temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies.  相似文献   

8.
How mate preferences evolve in the first place has been a major conundrum for sexual selection. Some hypotheses explaining this assume fitness benefit derived from subsequent generations. Major histocompatibility complex (MHC)‐based mate choice is a representative example of the mate choice that is associated with such trans‐generational mechanisms. To provide evidences for fitness benefit of MHC‐based mate choice, previous studies assessed the association between own MHC genotype and own fitness components. However, the association between MHC‐based mate choice in the parental generation and fitness components in the resultant offspring generation has only rarely been measured in wild populations. Focusing on the isolated population of the monogamous Ryukyu Scops Owl (Otus elegans interpositus) on Minami‐daito Island, Japan, we found evidence of MHC‐based mate choice. However, we found no evidence of MHC‐based mate choice increasing own reproductive success or offspring survival. This is a rare case study that directly examines the existence of the trans‐generational indirect benefit of MHC‐based mate choice for genetic compatibility from trans‐generational data in a wild bird population. By investigating the fitness benefits of mate choice, this study serves to facilitate our understanding of the evolution of MHC‐based mate choice.  相似文献   

9.
Order of birth has profound consequences on offspring across taxa during development and can have effects on individuals later in life. In birds, differential maternal allocation and investment in their progeny lead to variance in the environmental conditions that offspring experience during growth within the brood. In particular, laying and hatching order have been proposed to influence individual quality during the growing period, but little is known about the fitness consequences that these two factors have for offspring from a lifetime perspective. We explored the effect of laying and hatching order on post‐fledgling survival (measured as recruitment probability) and lifetime reproductive success (LRS) in Common Kestrels Falco tinnunculus, using a long‐term and individual‐based dataset. First‐hatched chicks showed higher survival probability and LRS than their siblings. This effect was not due to body condition of the individuals at adulthood, the quality of their mates or the reproductive outcome compared with later‐hatched individuals. Instead, first‐hatched chicks had a higher recruitment probability. This could be explained by the higher body condition attained by first‐hatched chicks at the end of the nesting period, perhaps due to an enhanced competitive advantage for food over their siblings at the time of hatching. Laying order, in contrast to hatching order, appeared to have little or no effect on LRS. Our results suggest that hatching order within siblings predicts fitness, and that better early‐life conditions during growth experienced by first‐hatched chicks improve first survival and then recruitment, resulting in an enhanced LRS.  相似文献   

10.
The MHC (Major Histocompatibility Complex) plays an important role in the immune system of vertebrates. MHC genes are extremely polymorphic and this variation is considered to be maintained by selection from pathogens. We investigate whether MHC diversity (number of different alleles per individual) affects the survival and recruitment of nestling house sparrows. We hypothesize that individuals with higher MHC diversity can recognize and combat a wider range of pathogens, and therefore are more likely to survive and recruit into the breeding population. Additionally, we hypothesize that specific MHC class I alleles (MHC‐I) could be associated with survival and recruitment. We screened MHC‐I genotypes in 518 house sparrow chicks hatched on Lundy Island but we found no evidence for a relationship between nestling survival, post‐fledging survival or recruitment success with MHC diversity. Then we investigated effects of specific MHC‐I alleles in 195 individuals from a single cohort. Twenty‐one MHC‐I alleles were tested for relationships with nestling survival, post‐fledging survival and recruitment, and we detected associations with survival for three different alleles. This pattern was, however, not different to what would be expected from random, so we could not conclude that particular MHC‐I alleles are associated with survival in house sparrows on Lundy Island. Nonetheless, one of these alleles (1105) showed both a tendency for a higher probability of surviving in nestlings, and a significant association with survival in fledglings. We envision that allele 1105 could be an interesting candidate gene for testing associations with survival in house sparrows in the future.  相似文献   

11.
Recently, Schroeder et al. (2010, Ibis 152: 368–377) suggested that intronic variation in the CHD1‐Z gene of Black‐tailed Godwits breeding in southwest Friesland, The Netherlands, correlated with fitness components. Here we re‐examine this surprising result using an expanded dataset (2088 birds sampled from 2004 to 2010 vs. 284 birds from 2004 to 2007). We find that the presence of the Z* allele (9% of the birds) is not associated with breeding habitat type, egg size, adult survival, adult body mass or adult body condition. The results presented here, when used in synergy with the previously reported results by Schroeder et al., suggest that there might be a tendency towards female adults with the Z* allele laying earlier clutches than adult females without the Z* allele. The occurrence of the Z* allele was also associated with a higher chick body mass and return rate. Chicks with the Z* allele that had hatched early in the breeding season were heavier at birth than chicks without the Z* allele and chicks with the Z* allele that had hatched late. Collectively, the results suggest that variation in the CHD1‐Z gene may indeed have arisen as a byproduct of selection acting on females during the egg fase and on chicks during the rearing stages of the reproductive cycle.  相似文献   

12.
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

13.
Microbes establish very diverse but still poorly understood associations with other microscopic or macroscopic organisms that do not follow the more conventional modes of competition or mutualism. Phaffia rhodozyma, an orange‐coloured yeast that produces the biotechnologically relevant carotenoid astaxanthin, exhibits a Holarctic association with birch trees in temperate forests that contrasts with the more recent finding of a South American population associated with Nothofagus (southern beech) and with stromata of its biotrophic fungal parasite Cyttaria spp. We investigated whether the association of Phaffia with Nothofagus–Cyttaria could be expanded to Australasia, the other region of the world where Nothofagus are endemic, studied the genetic structure of populations representing the known worldwide distribution of Phaffia and analysed the evolution of the association with tree hosts. The phylogenetic analysis revealed that Phaffia diversity in Australasia is much higher than in other regions of the globe and that two endemic and markedly divergent lineages seem to represent new species. The observed genetic diversity correlates with host tree genera rather than with geography, which suggests that adaptation to the different niches is driving population structure in this yeast. The high genetic diversity and endemism in Australasia indicate that the genus evolved in this region and that the association with Nothofagus is the ancestral tree association. Estimates of the divergence times of Phaffia lineages point to splits that are much more recent than the break‐up of Gondwana, supporting that long‐distance dispersal rather than vicariance is responsible for observed distribution of P. rhodozyma.  相似文献   

14.
Parasite‐mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease‐related traits. However, nonadaptive processes like migration and extinction‐(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life‐history and disease‐related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite‐mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life‐history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QSTFST‐like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction‐(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.  相似文献   

15.
Correlations between heterozygosity and fitness are frequently found but rarely well understood. Fitness can be affected by single loci of large effect which correlate with neutral markers via linkage disequilibrium, or as a result of variation in genome‐wide heterozygosity following inbreeding. We explored these alternatives in the common buzzard, a raptor species in which three colour morphs differ in their lifetime reproductive success. Using 18 polymorphic microsatellite loci, we evaluated potential genetic differences among the morphs which may lead to subpopulation structuring and tested for correlations between three fitness‐related traits and heterozygosity, both genome wide and at each locus separately. Despite their assortative mating pattern, the buzzard morphs were found to be genetically undifferentiated. Multilocus heterozygosity was only found to be correlated with a single fitness‐related trait, infection with the blood parasite, Leucocytozoon buteonis, and this was via interactions with vole abundance and age. One locus also showed a significant relationship with blood parasite infection and ectoparasite infestation. The vicinity of this locus contains two genes, one of which is potentially implicated in the immune system of birds. We conclude that genome‐wide heterozygosity is unlikely to be a major determinant of parasite burden and body condition in the polymorphic common buzzard.  相似文献   

16.
The capacity of an individual to battle infection is an important fitness determinant in wild vertebrate populations. The major histocompatibility complex (MHC) genes are crucial for a host's adaptive immune system to detect pathogens. However, anthropogenic activities may disrupt natural cycles of co‐evolution between hosts and pathogens. In this study, we investigated the dynamic sequence and expression variation of host parasite interactions in brook charr (Salvelinus fontinalis) in a context of past human disturbance via population supplementation from domestic individuals. To do so, we developed a new method to examine selection shaping MHC diversity within and between populations and found a complex interplay between neutral and selective processes that varied between lakes that were investigated. We provided evidence for a lower introgression rate of domestic alleles and found that parasite infection increased with domestic genomic background of individuals. We also documented an association between individual MHC alleles and parasite taxa. Finally, longer cis‐regulatory minisatellites were positively correlated with MHC II down‐regulation and domestic admixture, suggesting that inadvertent selection during domestication resulted in a lower immune response capacity, through a trade‐off between growth and immunity, which explained the negative selection of domestic alleles at least under certain circumstances.  相似文献   

17.
18.
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite‐mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection (“trans‐species polymorphism”), or alternatively favouring the independent emergence of functionally similar alleles post‐speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut–parasite communities in four sympatric lemurs. We tested for parasite‐MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co‐ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC‐parasite co‐evolution should be envisaged at the community level. We further show that balancing selection maintaining trans‐species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.  相似文献   

19.
Major histocompatibility complex (MHC) genes encode proteins that play a central role in vertebrates' adaptive immunity to parasites. MHC loci are among the most polymorphic in vertebrates' genomes, inspiring many studies to identify evolutionary processes driving MHC polymorphism within populations and divergence between populations. Leading hypotheses include balancing selection favouring rare alleles within populations, and spatially divergent selection. These hypotheses do not always produce diagnosably distinct predictions, causing many studies of MHC to yield inconsistent or ambiguous results. We suggest a novel strategy to distinguish balancing vs. divergent selection on MHC, taking advantage of natural admixture between parapatric populations. With divergent selection, individuals with immigrant alleles will be more infected and less fit because they are susceptible to novel parasites in their new habitat. With balancing selection, individuals with locally rare immigrant alleles will be more fit (less infected). We tested these contrasting predictions using three‐spine stickleback from three replicate pairs of parapatric lake and stream habitats. We found numerous positive and negative associations between particular MHC IIβ alleles and particular parasite taxa. A few allele–parasite comparisons supported balancing selection, and others supported divergent selection between habitats. But, there was no overall tendency for fish with immigrant MHC alleles to be more or less heavily infected. Instead, locally rare MHC alleles (not necessarily immigrants) were associated with heavier infections. Our results illustrate the complex relationship between MHC IIβ allelic variation and spatially varying multispecies parasite communities: different hypotheses may be concurrently true for different allele–parasite combinations.  相似文献   

20.
The major histocompatibility complex (MHC) plays a crucial role in the immune system, and in some species, it is a target by which individuals choose mates to optimize the fitness of their offspring, potentially mediated by olfactory cues. Under the genetic compatibility hypothesis, individuals are predicted to choose mates with compatible MHC alleles, to increase the fitness of their offspring. Studies of MHC‐based mate choice in wild mammals are under‐represented currently, and few investigate more than one class of MHC genes. We investigated mate choice based on the compatibility of MHC class I and II genes in a wild population of European badgers (Meles meles). We also investigated mate choice based on microsatellite‐derived pairwise relatedness, to attempt to distinguish MHC‐specific effects from genomewide effects. We found MHC‐assortative mating, based on MHC class II, but not class I genes. Parent pairs had smaller MHC class II DRB amino acid distances and smaller functional distances than expected from random pairings. When we separated the analyses into within‐group and neighbouring‐group parent pairs, only neighbouring‐group pairs showed MHC‐assortative mating, due to similarity at MHC class II loci. Our randomizations showed no evidence of genomewide‐based inbreeding, based on 35 microsatellite loci; MHC class II similarity was therefore the apparent target of mate choice. We propose that MHC‐assortative mate choice may be a local adaptation to endemic pathogens, and this assortative mate choice may have contributed to the low MHC genetic diversity in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号