首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.  相似文献   

3.
Metabolism of bone is regulated by the balance between osteoblast‐mediated bone formation and osteoclast‐mediated bone resorption. Activation of osteoclasts could lead to osteoporosis. Thus, inhibiting the activity of osteoclasts becomes an available strategy for the treatment of osteoporosis. Tectorigenin is an extract of Belamcanda chinensis In the present study, the anti‐osteoclastogenesis effects of tectorigenin were investigated in vitro and in vivo. The results showed preventive and therapeutic effects of tectorigenin at concentrations of 0, 10, 40, and 80 μmol/L in the maturation and activation of osteoclasts. A signalling study also indicated that tectorigenin treatment reduces activation of NF‐κB signalling in osteoclastogenesis. Animal experiment demonstrated that tectorigenin treatment (1‐10 mg/kg, abdominal injection every 3 days) significantly inhibits bone loss in ovariectomized C57BL/6. Our data suggest that tectorigenin is a potential pharmacological choice for osteoporosis.  相似文献   

4.
Osteoclast overactivation‐induced imbalance in bone remodelling leads to pathological bone destruction, which is a characteristic of many osteolytic diseases such as rheumatoid arthritis, osteoporosis, periprosthetic osteolysis and periodontitis. Natural compounds that suppress osteoclast formation and function have therapeutic potential for treating these diseases. Stachydrine (STA) is a bioactive alkaloid isolated from Leonurus heterophyllus Sweet and possesses antioxidant, anti‐inflammatory, anticancer and cardioprotective properties. However, its effects on osteoclast formation and function have been rarely described. In the present study, we found that STA suppressed receptor activator of nuclear factor‐κB (NF‐κB) ligand (RANKL)‐induced osteoclast formation and bone resorption, and reduced osteoclast‐related gene expression in vitro. Mechanistically, STA inhibited RANKL‐induced activation of NF‐κB and Akt signalling, thus suppressing nuclear factor of activated T cells c1 induction and nuclear translocation. In addition, STA alleviated bone loss and reduced osteoclast number in a murine model of LPS‐induced inflammatory bone loss. STA also inhibited the activities of NF‐κB and NFATc1 in vivo. Together, these results suggest that STA effectively inhibits osteoclastogenesis both in vitro and in vivo and therefore is a potential option for treating osteoclast‐related diseases.  相似文献   

5.
6.
Postmenopausal Osteoporosis (PMOP) is oestrogen withdrawal characterized of much production and activation by osteoclast in the elderly female. Cytisine is a quinolizidine alkaloid that comes from seeds or other plants of the Leguminosae (Fabaceae) family. Cytisine has been shown several potential pharmacological functions. However, its effects on PMOP remain unknown. This study designed to explore whether Cytisine is able to suppress RANKL‐induced osteoclastogenesis and prevent the bone loss induced by oestrogen deficiency in ovariectomized (OVX) mice. In this study, we investigated the effect of Cytisine on RAW 264.7 cells and bone marrow monocytes (BMMs) derived osteoclast culture system in vitro and observed the effect of Cytisine on ovariectomized (OVX) mice model to imitate postmenopausal osteoporosis in vivo. We found that Cytisine inhibited F‐actin ring formation and tartrate‐resistant acid phosphatase (TRAP) staining in dose‐dependent ways, as well as bone resorption by pit formation assays. For molecular mechanism, Cytisine suppressed RANK‐related trigger RANKL by phosphorylation JNK/ERK/p38‐MAPK, IκBα/p65‐NF‐κB, and PI3K/AKT axis and significantly inhibited these signalling pathways. However, the suppression of PI3K‐AKT‐NFATc1 axis was rescued by AKT activator SC79. Meanwhile, Cytisine inhibited RANKL‐induced RANK‐TRAF6 association and RANKL‐related gene and protein markers such as NFATc1, Cathepsin K, MMP‐9 and TRAP. Our study indicated that Cytisine could suppress bone loss in OVX mouse through inhibited osteoclastogenesis. All data provide the evidence that Cytisine may be a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis.  相似文献   

7.
Osteolytic bone diseases such as osteoporosis have a common pathological feature in which osteoclastic bone resorption outstrips bone synthesis. Osteoclast formation and activation are regulated by receptor activator of nuclear factor κB ligand (RANKL). The induction of RANKL‐signaling pathways occurs following the interaction of RANKL to its cognate receptor, RANK. This specific binding drives the activation of downstream signaling pathways; which ultimately induce the formation and activation of osteoclasts. In this study, we showed that a natural immunomodulator, mangiferin, inhibits osteoclast formation and bone resorption by attenuating RANKL‐induced signaling. Mangiferin diminished the expression of osteoclast marker genes, including cathepsin K, calcitonin receptor, DC‐STAMP, and V‐ATPase d2. Mechanistic studies revealed that mangiferin inhibits RANKL‐induced activation of NF‐κB, concomitant with the inhibition of IκB‐α degradation, and p65 nuclear translocation. In addition, mangiferin also exhibited an inhibitory effect on RANKL‐induced ERK phosphorylation. Collectively, our data demonstrates that mangiferin exhibits anti‐resorptive properties, suggesting the potential application of mangiferin for the treatment and prevention of bone diseases involving excessive osteoclastic bone resorption. J. Cell. Biochem. 112: 89–97, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Wear particle‐stimulated inflammatory bone destruction and the consequent aseptic loosening remain the primary causes of artificial prosthesis failure and revision. Previous studies have demonstrated that curcumin has a protective effect on bone disorders and inflammatory diseases and can ameliorate polymethylmethacrylate‐induced osteolysis in vivo. However, the effect on immunomodulation and the definitive mechanism by which curcumin reduces the receptor activators of nuclear factor‐kappa B ligand (RANKL)‐stimulated osteoclast formation and prevents the activation of osteoclastic signalling pathways are unclear. In this work, the immunomodulation effect and anti‐osteoclastogenesis capacities exerted by curcumin on titanium nanoparticle‐stimulated macrophage polarization and on RANKL‐mediated osteoclast activation and differentiation in osteoclastic precursor cells in vitro were investigated. As expected, curcumin inhibited RANKL‐stimulated osteoclast maturation and formation and had an immunomodulatory effect on macrophage polarization in vitro. Furthermore, studies aimed to identify the potential molecular and cellular mechanisms revealed that this protective effect of curcumin on osteoclastogenesis occurred through the amelioration of the activation of Akt/NF‐κB/NFATc1 pathways. Additionally, an in vivo mouse calvarial bone destruction model further confirmed that curcumin ameliorated the severity of titanium nanoparticle‐stimulated bone loss and destruction. Our results conclusively indicated that curcumin, a major biologic component of Curcuma longa with anti‐inflammatory and immunomodulatory properties, may serve as a potential therapeutic agent for osteoclastic diseases.  相似文献   

9.
Revision operations have become a new issue after successful artificial joint replacements, and periprosthetic osteolysis leading to prosthetic loosening is the main cause of why the overactivation of osteoclasts (OCs) plays an important role. The effect of biochanin A (BCA) has been examined in osteoporosis, but no study on the role of BCA in prosthetic loosening osteolysis has been conducted yet. In this study, we utilised enzyme‐linked immunosorbent assay, computed tomography imaging, and histological analysis. Results showed that BCA downregulated the secretion levels of tumor necrosis factor‐α, interleukin‐1α (IL‐1α), and IL‐1β to suppress inflammatory responses. The secretion levels of receptor‐activated nuclear factor‐κB ligand, CTX‐1, and osteoclast‐associated receptor as well as Ti‐induced osteolysis were also reduced. BCA effectively inhibited osteoclastogenesis and suppressed hydroxyapatite resorption by downregulating OC‐related genes in vitro. Analysis of mechanisms indicated that BCA inhibited the signalling pathways of mitogen‐activated protein kinase (P38, extracellular signal‐regulated kinase, and c‐JUN N‐terminal kinase) and nuclear factor‐κB (inhibitor κB‐α and P65), thereby downregulating the expression of nuclear factor of activated T cell 1 and c‐Fos. In conclusion, BCA may be an alternative choice for the prevention of prosthetic loosening caused by OCs.  相似文献   

10.
11.
12.
Endometritis is a postnatal reproductive disorder disease, which leads to great economic losses for the modern dairy industry. Emerging evidence indicates that microRNAs (miRNAs) play a pivotal role in a variety of diseases and have been identified as critical regulators of the innate immune response. Recent miRNome profile analysis revealed an altered expression level of miR‐148a in cows with endometritis. Therefore, the present study aims to investigate the regulatory role of miR‐148a in the innate immune response involved in endometritis and estimate its potential therapeutic value. Here, we found that miR‐148a expression in lipopolysaccharide (LPS)‐stimulated endometrial epithelial cells was significantly decreased . Our results also showed that overexpression of miR‐148a using agomiR markedly reduced the production of pro‐inflammatory cytokines, such as IL‐1β and TNF‐α. Moreover, overexpression of miR‐148a also suppressed NF‐κB p65 activation by targeting the TLR4‐mediated pathway. Subsequently, we further verified that miR‐148a repressed TLR4 expression by binding to the 3′‐UTR of TLR4 mRNA. Additionally, an experimental mouse endometritis model was employed to evaluate the therapeutic value of miR‐148a. In vivo studies suggested that up‐regulation of miR‐148a alleviated the inflammatory conditions in the uterus as evidenced by H&E staining, qPCR and Western blot assays, while inhibition of miR‐148a had inverse effects. Collectively, pharmacologic stabilization of miR‐148a represents a novel therapy for endometritis and other inflammation‐related diseases.  相似文献   

13.
14.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
This study investigated the anticancer effects of geraniin on ovarian cancer cells and the signaling pathways involved. Ovarian cancer cells were treated with different concentrations of geraniin for 48 h and examined for viability, apoptosis, mitochondrial membrane depolarization, and gene expression. Xenograft tumor studies were performed to determine the anticancer activity of geraniin in vivo. Geraniin significantly decreased cancer cell viability in a concentration‐dependent fashion. Geraniin significantly triggered apoptosis, which was accompanied by loss of mitochondrial membrane potential and increased cytochrome c release and caspsase‐3 activity. Mechanistically, geraniin significantly downregulated Mcl‐1 and impaired NF‐κB p65 binding to the mcl‐1 promoter. Overexpression of Mcl‐1 significantly reversed geraniin‐induced apoptosis in OVCAR3 cells. In addition, geraniin retarded ovarian cancer growth and reduced expression of phospho‐p65 and Mcl‐1. Collectively, geraniin elicits growth suppression in ovarian cancer through inhibition of NF‐κB and Mcl‐1 and may provide therapeutic benefits for this malignancy.  相似文献   

17.
18.
19.
20.
Noise‐induced hearing loss (NIHL) is one of the most frequent disabilities in industrialized countries. Evidence shows that hair cell loss in the auditory end organ is responsible for the majority of various ear pathological conditions. The functional roles of the receptor tyrosine kinase ROR1 have been underscored in various tumours. In this study, we evaluated the ability of ROR1 to influence cochlear hair cell loss of guinea pigs with NIHL. The NIHL model was developed in guinea pigs, with subsequent measurement of the auditory brainstem response (ABR). Gain‐of‐function experiments were employed to explore the role of ROR1 in NIHL. The interaction between ROR1 and Wnt5a and their functions in the cochlear hair cell loss were further analysed in response to alteration of ROR1 and Wnt5a. Guinea pigs with NIHL demonstrated elevated ABR threshold and down‐regulated ROR1, Wnt5a and NF‐κB p65. The up‐regulation of ROR1 was shown to decrease the cochlear hair cell loss and the expression of pro‐apoptotic gene (Bax, p53) in guinea pig cochlea, but promoted the expression of anti‐apoptotic gene (Bcl‐2) and the fluorescence intensity of cleaved‐caspase‐3. ROR1 interacted with Wnt5a to activate the NF‐κB signalling pathway through inducing phosphorylation and translocation of p65. Furthermore, Wnt5a overexpression decreased the cochlear hair cell loss. Collectively, this study suggested the protection of overexpression of ROR1 against cochlear hair cell loss in guinea pigs with NIHL via the Wnt5a‐dependent NF‐κB signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号