首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Long‐chain polyunsaturated n‐3 fatty acids (n‐3 LCPUFAs) have hypolipidemic effects and modulate intermediary metabolism to prevent or reverse insulin resistance in a way that is not completely elucidated. Here, effects of these fatty acids on the lipid profile, phosphoenolpyruvate carboxykinase (PEPCK) activity, lipid synthesis from glucose in epididymal adipose tissue (Ep‐AT) and liver were investigated. Male rats were fed a high‐sucrose diet (SU diet), containing either sunflower oil or a mixture of sunflower and fish oil (SU–FO diet), and the control group was fed a standard diet. After 13 weeks, liver, adipose tissue and blood were harvested and analysed. The dietary n‐3 LCPUFAs prevented sucrose‐induced increase in adiposity and serum free fat acids, serum and hepatic triacylglycerol and insulin levels. Furthermore, these n‐3 LCPUFAs decreased lipid synthesis from glucose and increased PEPCK activity in the Ep‐AT of rats fed the SU–FO diet compared to those fed the SU diet, besides reducing lipid synthesis from glucose in hepatic tissue. Thus, the inclusion of n‐3 LCPUFAs in the diet may be beneficial for the prevention or attenuation of dyslipidemia and insulin resistance, and for reducing the risk of related chronic diseases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Phytoplankton are the main source of energy and omega‐3 (n‐3) long‐chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n‐3 long‐chain polyunsaturated FA (LC‐PUFA) and an increase in omega‐6 FA and saturated FA. Based on linear regression models, we predict that global n‐3 LC‐PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n‐3 LC‐PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems.  相似文献   

5.
6.
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats.  相似文献   

7.
Recent studies suggest that the use of vegetable oils at expense of fish oil in aquaculture feeds might have potential negative effects on fish redox homeostasis and adiposity. Resveratrol (RESV) is a lipid-soluble phytoalexin present in fruits and vegetables with proven in vivo antioxidant function in animals. The present study aims to assess the potential use of RESV in Atlantic salmon feeds. To this end, post-smolt salmons with an initial BW of 148±3 g were fed four experimental diets for 15 weeks. A diet low in fish oil served as a control and was supplemented with 0, 0.5, 1.5 and 2.5 g/kg of RESV, respectively. The effect of the experimental diets on animal performance, tissue fatty acid composition, and the expression of genes encoding proteins involved in antioxidant signalling, lipid peroxidation, and metabolism were studied. Resveratrol significantly reduced feed intake and final BW of the salmon. Feeding RESV did not affect the sum of saturated and monounsaturated fatty acids or total lipids in the fillet. While the content of total polyunsaturated fatty acids was not affected, the percentages of some fatty acids in the liver and fillet were changed by RESV. Furthermore, in liver, the relative expression of glutathione peroxidase 4b, nuclear factor-like 2, and arachidonate 5-lipoxygenase remained unchanged across treatment groups. In conclusion, the negative impact of dietary RESV on FI and hence reduction of the BW discourages its inclusion in low fish oil diets for Atlantic salmon.  相似文献   

8.
9.
Emerging aquatic insects, including mosquitoes, are known to transfer to terrestrial ecosystems specific essential biochemicals, such as polyunsaturated fatty acids (PUFA). We studied fatty acid (FA) composition and contents of dominant mosquito populations (Diptera: Culicidae), that is, Anopheles messeae, Ochlerotatus caspius, Oc. flavescens, Oc. euedes, Oc. subdiversus, Oc. cataphylla, and Aedes cinereus, inhabited a steppe wetland of a temperate climate zone to fill up the gap in their lipid knowledge. The polar lipid and triacylglycerol fractions of larvae and adults were compared. In most studied mosquito species, we first found and identified a number of short‐chain PUFA, for example, prominent 14:2n‐6 and 14:3n‐3, which were not earlier documented in living organisms. These PUFA, although occurred in low levels in adult mosquitoes, can be potentially used as markers of mosquito biomass in terrestrial food webs. We hypothesize that these acids might be synthesized (or retroconverted) by the mosquitoes. Using FA trophic markers accumulated in triacylglycerols, trophic relations of the mosquitoes were accessed. The larval diet comprised green algae, cryptophytes, and dinoflagellates and provided the mosquitoes with essential n‐3 PUFA, linolenic, and eicosapentaenoic acids. As a result, both larvae and adults of the studied mosquitoes had comparatively high content of the essential PUFA. Comparison of FA proportions in polar lipids versus storage lipids shown that during mosquito metamorphosis transfer of essential eicosapentaenoic and arachidonic acids from the reserve in storage lipids of larvae to functional polar lipids in adults occurred.  相似文献   

10.
11.
Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA‐guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co‐evolved viral silencing‐suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA‐regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three‐step transgenic pathway for the synthesis of arachidonic acid (AA), an ω‐6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP‐AA‐transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.  相似文献   

12.
Objective: We showed glucose‐dependent lipolytic oscillations in adipocytes that are modulated by free fatty acids (FFAs). We hypothesized that the oscillations are driven by oscillatory glucose metabolism that leads to oscillatory formation of α‐glycerophosphate (α‐GP), oscillatory removal of long‐chain coenzyme A (LC‐CoA) by α‐GP to form triglycerides, and oscillatory relief of LC‐CoA inhibition of triglyceride lipases. This study examined the effect of insulin on this hypothesis. Research Methods and Procedures: Samples were collected every minute from perifused rat adipocytes during the basal state followed by insulin (±glucose) or isoproterenol (±insulin; n = 4 each). Results: Insulin caused a significant increase in glycerol release (18%), with a concomitant significant decrease in FFA release (38%). Without glucose, insulin had no effect on glycerol release while still decreasing FFA release (35%). Insulin (5 μU/mL) attenuated the response of lipolysis to isoproterenol (~3‐fold increase with isoproterenol vs. 2‐fold increase with insulin + isoproterenol). However, 1 mU/mL insulin amplified the lipolytic response (~5‐fold increase in glycerol release with insulin + isoproterenol), with a concomitant increase in FFA reesterification (no increase in FFA release compared with isoproterenol alone). Discussion: We interpret these results to be due to insulin's ability to increase glucose uptake and conversion to α‐GP, thus removing LC‐CoA inhibition of triglyceride lipases. While the physiological importance of lipolytic oscillations remains to be determined, we hypothesize that such an oscillation may play an important role in the delivery of FFAs to the liver, β cells, and other tissues.  相似文献   

13.
14.
Chromosomal inversions have been implicated in facilitating adaptation in the face of high levels of gene flow, but whether chromosomal fusions also have similar potential remains poorly understood. Atlantic salmon are usually characterized by population structure at multiple spatial scales; however, this is not the case for tributaries of the Miramichi River in North America. To resolve genetic relationships between populations in this system and the potential for known chromosomal fusions to contribute to adaptation, we genotyped 728 juvenile salmon using a 50 K SNP array. Consistent with previous work, we report extremely weak overall population structuring (Global FST = 0.004) and failed to support hierarchical structure between the river's two main branches. We provide the first genomic characterization of a previously described polymorphic fusion between chromosomes 8 and 29. Fusion genomic characteristics included high LD, reduced heterozygosity in the fused homokaryotes, and strong divergence between the fused and the unfused rearrangement. Population structure based on fusion karyotype was five times stronger than neutral variation (FST = 0.019), and the frequency of the fusion was associated with summer precipitation supporting a hypothesis that this rearrangement may contribute local adaptation despite weak neutral differentiation. Additionally, both outlier variation among populations and a polygenic framework for characterizing adaptive variation in relation to climate identified a 250‐Kb region of chromosome 9, including the gene six6 that has previously been linked to age‐at‐maturity and run‐timing for this species. Overall, our results indicate that adaptive processes, independent of major river branching, are more important than neutral processes for structuring these populations.  相似文献   

15.
16.
X‐linked adrenoleukodystrophy (X‐ALD) is an inherited disease characterized by progressive inflammatory demyelization in the brain, adrenal insufficiency, and an abnormal accumulation of very long chain fatty acids (VLCFA) in tissue and body fluids. Considering that inflammation might be involved in pathophysiology of X‐ALD, we aimed to investigate pro‐ and anti‐inflammatory cytokines in plasma from three different male phenotypes (CCER, AMN, and asymptomatic individuals). Our results showed that asymptomatic patients presented increased levels of pro‐inflammatory cytokines IL‐1β, IL‐2, IL‐8, and TNF‐α and the last one was also higher in AMN phenotype. Besides, asymptomatic patients presented higher levels of anti‐inflammatory cytokines IL‐4 and IL‐10. AMN patients presented higher levels of IL‐2, IL‐5, and IL‐4. We might hypothesize that inflammation in X‐ALD is related to plasmatic VLCFA concentration, since there were positive correlations between C26:0 plasmatic levels and pro‐inflammatory cytokines in asymptomatic and AMN patients and negative correlation between anti‐inflammatory cytokine and C24:0/C22:0 ratio in AMN patients. The present work yields experimental evidence that there is an inflammatory imbalance associated Th1, (IL‐2, IL‐6, and IFN‐γ), Th2 (IL‐4 and IL‐10), and macrophages response (TNF‐α and IL‐1β) in the periphery of asymptomatic and AMN patients, and there is correlation between VLCFA plasmatic levels and inflammatory mediators in X‐ALD. Furthermore, we might also speculate that the increase of plasmatic cytokines in asymptomatic patients could be considered an early biomarker of brain damage and maybe also a predictor of disease progression.  相似文献   

17.
Soya bean (Glycine max (L.) Merr.) is sought after for both its oil and protein components. Genetic approaches to add value to either component are ongoing efforts in soya bean breeding and molecular biology programmes. The former is the primary vegetable oil consumed in the world. Hence, its primary usage is in direct human consumption. As a means to increase its utility in feed applications, thereby expanding the market of soya bean coproducts, we investigated the simultaneous displacement of marine ingredients in aquafeeds with soya bean‐based protein and a high Omega‐3 fatty acid soya bean oil, enriched with alpha‐linolenic and stearidonic acids, in both steelhead trout (Oncorhynchus mykiss) and Kampachi (Seriola rivoliana). Communicated herein are aquafeed formulations with major reduction in marine ingredients that translates to more total Omega‐3 fatty acids in harvested flesh. Building off of these findings, subsequent efforts were directed towards a genetic strategy that would translate to a prototype design of an optimal identity‐preserved soya bean‐based feedstock for aquaculture, whereby a multigene stack approach for the targeted synthesis of two value‐added output traits, eicosapentaenoic acid and the ketocarotenoid, astaxanthin, were introduced into the crop. To this end, the systematic introduction of seven transgenic cassettes into soya bean, and the molecular and phenotypic evaluation of the derived novel events are described.  相似文献   

18.
Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication‐driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion‐and‐deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high‐throughput genotyping. A contiguous long low‐diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication‐related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.  相似文献   

19.
Biofuel from fatty acids with chain lengths of 8–15 (C8–C15) have properties similar to those of conventional diesel and jet fuels, thus, can save time and reduce costs for the refurbishment of engines and maintenance of oiling facilities. Most oil‐producing algae yield C16–C18 fatty acids; however, the manipulation of algae using genetic engineering is a promising approach to obtain C8–C15 fatty acids. The introduction of a medium‐chain‐specific thioesterase (TE) is expected to effectively alter algae to produce medium‐chain fatty acids (MCFAs). TE is the main determinant of fatty acid chain length as it releases fatty acids from the acyl carrier protein (ACP) in the fatty acid elongation cycle. In a previous study, the introduction of heterologous C8–C12‐specific TEs into Chlamydomonas reinhardtii did not increase the yield of MCFAs. This effect was attributed to a low affinity of the heterologous TEs to C. reinhardtii ACP. Therefore, we introduced both the C10–C14‐specific TE gene and the ACP gene from the land plant Cuphea lanceolata into C. reinhardtii. We measured free fatty acids (FFAs) and triacylglycerols (TAGs) in the transformants using liquid chromatography–mass spectrometry. The production of C12:0 and C14:0, chain length 12 and 14 without unsaturation, FFAs was not significantly increased in any of the tested strains. However, we found a slight but significant increase in TAG‐containing MCFAs in both TE only and TE–ACP transformants. The increased production rate of C14:0‐containing TAGs ranged from 1.25‐ to 1.58‐fold, indicating the ability of medium‐chain‐specific TE to increase MCFAs. These results suggest that the selection of specific TEs is important when modifying eukaryotic algae to produce MCFAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号