首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathode materials are usually active in the range of 2–4.3 V, but the decomposition of the electrolytic salt above 4 V versus Na+/Na is common. Arguably, the greatest concern is the formation of HF after the reaction of the salts with water molecules, which are present as an impurity in the electrolyte. This HF ceaselessly attacks the active materials and gradually causes the failure of the electrode via electric isolation of the active materials. In this study, a bioinspired β‐NaCaPO4 nanolayer is reported on a P2‐type layered Na2/3[Ni1/3Mn2/3]O2 cathode material. The coating layers successfully scavenge HF and H2O, and excellent capacity retention is achieved with the β‐NaCaPO4‐coated Na2/3[Ni1/3Mn2/3]O2 electrode. This retention is possible because a less acidic environment is produced in the Na cells during prolonged cycling. The intrinsic stability of the coating layer also assists in delaying the exothermic decomposition reaction of the desodiated electrodes. Formation and reaction mechanisms are suggested for the coating layers responsible for the excellent electrode performance. The suggested technology is promising for use with cathode materials in rechargeable sodium batteries to mitigate the effects of acidic conditions in Na cells.  相似文献   

2.
3.
Cisplatin, a proven effective chemotherapeutic agent, has been used clinically to treat malignant solid tumors, whereas its clinical use is limited by serious side effect including nephrotoxicity. Platycodin D (PD), the major and marked saponin isolated from Platycodon grandiflorum, possesses many pharmacological effects. In this study, we evaluated its protective effect against cisplatin‐induced human embryonic kidney 293 (HEK‐293) cells injury and elucidated the related mechanisms. Our results showed that PD (0.25, 0.5, and 1 μM) can dose‐dependently alleviate oxidative stress by decreasing malondialdehyde and reactive oxygen species, while increasing the levels of glutathione, superoxide dismutase, and catalase. Moreover, the elevation of apoptosis including Bax, Bad, cleaved caspase‐3,‐9, and decreased protein levels of Bcl‐2, Bcl‐XL induced by cisplatin were reversed after PD treatment. Importantly, PD pretreatment can also regulate PI3K/Akt and ERK/JNK/p38 signaling pathways. Furthermore, PD was found to reduce NF‐κB‐mediated inflammatory relative proteins. Our finding indicated that PD exerted significant effects on cisplatin induced oxidative stress, apoptosis and inflammatory, which will provide evidence for the development of PD to attenuate cisplatin‐induced nephrotoxicity.  相似文献   

4.
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration.  相似文献   

5.
The purpose of this paper is to observe the protective action and its effective mechanism of eriodictyol on lipopolysaccharide (LPS)‐induced acute lung injury (ALI). In this study, our results indicated that eriodictyol could dramatically suppress the inflammatory mediators, including interleukin‐6 (IL‐6), IL‐1β, prostaglandin E2, and tumor necrosis factor‐α in bronchoalveolar lavage fluid of LPS‐challenged mice. Eriodictyol also alleviated the wet/dry ratio and improved pathological changes of the lung. In addition, eriodictyol significantly decreased myeloperoxidase activity and malondialdehyde content as well as increased superoxide dismutase activity. Moreover, eriodictyol inhibited the COX‐2/NLRP3/NF‐κB signaling pathway in the lung tissues of ALI mice. In conclusion, our observations validated that eriodictyol processed the protective effects on ALI mice, which was related to the regulation of the COX‐2/NLRP3/NF‐κB signaling pathway.  相似文献   

6.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

7.
It is less known about miRNA3127‐5p induced up‐regulation of PD‐L1, immune escape and drug resistance caused by increased PD‐L1 in lung cancer. In this study, lentivirus was transduced into lung cancer cells, and quantitative PCR and Western blot were used to detect the expression of PD‐L1. Then immunofluorescence assay was applied to detect autophagy, finally we explored the relationship between PD‐L1 expressions and chemoresistance in patients. As a result, we found that microRNA‐3127‐5p promotes pSTAT3 to induce the expression of PD‐L1; microRNA‐3127‐5p promotes STAT3 phosphorylation through suppressing autophagy, and autophagy could retaine pSTAT3 into the nucleus in miRNA‐3127‐5p knocked cells, and immune escape induced by elevated level of PD‐L1 results in chemoresistance of lung cancer. In conclusion, microRNA‐3127‐5p induces PD‐L1 elevation through regulating pSTAT3 expression. We also demonstrate that immune escape induced by PD‐L1 can be dismissed by corresponding monoclonal antibody.  相似文献   

8.
9.
Circular RNA YAP1 (circYAP1) was reported to participate in progression of gastric cancer. However, the role of circYAP1 in acute kidney injury (AKI) remains obscure. We attempted to examine the effects of circYAP1 on ischaemia/reperfusion‐stimulated renal injury. AKI model was established by treating HK‐2 cells in ischaemia/reperfusion (I/R) environment. CircYAP1 expression in blood of AKI patients and I/R‐treated HK‐2 cells was evaluated via RT‐qPCR. CCK‐8, flow cytometry, ELISA and ROS assay were executed to test the impact of circYAP1 on cell viability, apoptosis, inflammatory cytokines and ROS generation. Bioinformatic analysis was executed to explore miRNA targets. The relativity between circYAP1 and miR‐21‐5p was verified by RT‐qPCR and luciferase assay. The functions of miR‐21‐5p in I/R‐triggered injury were reassessed. PI3K/AKT/mTOR pathway was detected by Western blot. Down‐regulated circYAP1 was observed in AKI blood samples and I/R‐treated HK‐2 cells. CircYAP1 overexpression expedited cell growth and weakened secretion of inflammatory factors and ROS generation in I/R‐disposed cells. Besides, we found circYAP1 could sponge to miR‐21‐5p. Interestingly, miR‐21‐5p overexpression overturned the repressive effects of circYAP1 on cell injury. Moreover, PI3K/AKT/mTOR pathway was activated by circYAP1 via inhibiting miR‐21‐5p. We demonstrated that circYAP1 activated PI3K/AKT/mTOR pathway and secured HK‐2 cells from I/R injury via sponging miR‐21‐5p.  相似文献   

10.
11.
12.
The pervasive use of refined sugars in highly accessible, palatable foods and persistent exposure to reinforcing food‐associated cues has contributed to overconsumption of sugar‐rich diets and the current obesity epidemic in Western society. We have shown previously that brain relaxin‐3 mRNA levels positively correlate with sucrose and alcohol intake, and that central antagonism of relaxin‐3 receptors (RXFP3) attenuates alcohol self‐administration and alcohol‐seeking in rats, but food‐seeking behaviour and palatable food consumption in mice. To further examine the relationship between motivated appetitive behaviours and relaxin‐3/RXFP3 signalling, we investigated the effect of Rxfp3 gene deletion in C57BL/6J mice on sucrose and alcohol self‐administration and cue‐induced reinstatement (RNST) of sucrose‐ and alcohol‐seeking. Acquisition and maintenance of sucrose and alcohol self‐administration was assessed in male wild‐type (WT) and Rxfp3 knockout (KO) (C57BL/6JRXFP3TM1/DGen) littermate mice using fixed ratio (FR) schedules of reinforcement. Mice were subsequently challenged with a progressive ratio (PR) test to measure motivation and, following extinction training, re‐exposed to reward‐associated cues to evaluate RNST of active lever‐responding. Wild‐type and Rxfp3 KO mice displayed similar acquisition of FR1 sucrose self‐administration, but Rxfp3 KO mice responded less when the instrumental requirement was increased to FR3. These mice also showed a lower breakpoint for sucrose and attenuated cue‐induced RNST of sucrose‐seeking. Notably, no marked genotype differences in alcohol‐responding were observed. In mice, endogenous relaxin‐3/RXFP3 signalling promotes self‐administration of sucrose under high response requirements and cue‐induced RNST of sucrose‐seeking, but does not apparently regulate motivation to consume alcohol or alcohol‐seeking behaviour.  相似文献   

13.
14.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

15.
Lipid metabolism disorders lead to vascular endothelial injury. Matrine is an alkaloid that has been used to improve obesity and diabetes and for the treatment of hepatitis B. However, its effect on lipid metabolism disorders and vascular injury is unclear. Here, we investigated the effect of matrine on high‐fat diet fed mice and oxidized low‐density lipoprotein (ox‐LDL)‐induced human umbilical vein endothelial cells (HUVECs). Computational virtual docking analyses, phosphoinositide 3‐kinase (PI3K) and protein kinase C‐α (PKCα) inhibitors were used to localize matrine in vascular injuries. The results showed that matrine‐treated mice were more resistant to abnormal lipid metabolism and inflammation than vehicle‐treated mice and exhibited significantly alleviated ox‐LDL‐stimulated dysfunction of HUVECs, restored diminished nitric oxide release, decreased reactive oxygen species generation and increased expression phosphorylation of AKT‐Ser473 and endothelial nitric oxide synthase (eNOS)‐Ser1177. Matrine not only up‐regulates eNOS‐Ser1177 but also down‐regulates eNOS‐Thr495, a PKCα‐controlled negative regulator of eNOS. Using computational virtual docking analyses and biochemical assays, matrine was also shown to influence eNOS/NO via PKCα inhibition. Moreover, the protective effects of matrine were significantly abolished by the simultaneous application of PKCα and the PI3K inhibitor. Matrine may thus be potentially employed as a novel therapeutic strategy against high‐fat diet‐induced vascular injury.  相似文献   

16.
17.
Objective: This study was designed to determine when peroxisome proliferator‐activated receptor γ (PPARγ) is expressed in developing fetal adipose tissue and stromal‐vascular adipose precursor cells derived from adipose tissue. In addition we examined developing tissue for CCAAT/enhancer‐binding protein β (C/EBPβ) expression to see if it was correlated with PPARγ expression. Pituitary function and hormones involved with differentiation (dexamethasone and retinoic acid) were also tested for their effects on PPARγ expression to determine if hormones known to affect differentiation also effect PPARγ expression in vivo and in cell culture. Research Methods and Procedures: Developing subcutaneous adipose tissues from the dorsal region of the fetal pig were collected at different gestation times and assayed using Western blot analysis to determine levels of PPARγ and C/EBPβ. Hypophysectomy was performed on 75‐day pig fetuses and tissue samples were then taken at 105 days for Western blot analysis. Adipose tissue was also taken from postnatal pigs to isolate stromal‐vascular (S‐V) cells. These adipose precursor cells were grown in culture and samples were taken for Western blot analysis to determine expression levels of PPARγ. Results: Our results indicate that PPARγ is expressed as early as 50 days of fetal development in adipose tissue and continues through 105 days. Expression of PPARγ was found to be significantly enhanced in adipose tissue from hypophysectomized fetuses at 105 days of fetal development (p < 0.05). C/EBPβ was not found in 50‐ or 75‐day fetal tissues and was found only at low levels in 105‐day tissues. C/EBPβ was not found in hypophysectomized (hypoxed) 105‐day tissue where PPARγ was elevated. S‐V cells freshly isolated from adipose tissue of 5‐ to 7‐day postnatal pigs showed the expression of PPARγ1. When S‐V cells were cultured, both PPARγ1 and 2 were expressed after the first day and continued as cells differentiated. High concentrations of retinoic acid decreased PPARγ expression in early S‐V cultures (p < 0.05). Discussion: Our data indicate that PPARγ is expressed in fetal adipose tissue very early before distinct fat cells are observed and can be expressed without the expression of C/EBPβ. The increase in PPARγ expression after hypophysectomy may explain the increase in fat cell size under these conditions. Adipose precursor cells (S‐V cells) from 5‐ to 7‐day postnatal pigs also express PPARγ in the tissue before being induced to differentiate in culture. Thus S‐V cells from newborn pig adipose tissue are probably more advanced in development than the 3T3‐L1 cell model. S‐V cells may be in a state where PPARγ and C/EBPα are expressed but new signals or vascularization are needed before cells are fully committed and lipid filling begins.  相似文献   

18.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

19.
Cyclooxygenase 2 (COX‐2) is an important inflammatory factor. Previous studies have indicated that COX‐2 is induced with lipopolysaccharide (LPS) treatment. Here, we found that an inhibitor of histone deacetylase (HDAC), trichostatin A (TSA), cannot repress LPS‐induced COX‐2 but it increased the COX‐2 level in RAW264.7 cells. We found no significant difference in NF‐κB activation and ERK1/2 phosphorylation, but LPS‐induced C/EBPδ expression was completely abolished after TSA treatment of LPS‐treated cells. Interesting, reporter assay of C/EBPδ promoter revealed that Sp1‐binding site is important. Although there was no alteration in c‐Jun levels, but the phosphorylation of c‐Jun at its C‐terminus was increased dramatically. A DNA‐associated protein assay (DAPA) and chromatin immunoprecipitation assay (ChIP) indicated that c‐Jun was recruited via Sp1 to the promoter of C/EBPδ after LPS treatment; this recruitment of c‐Jun was repressed by TSA. C/EBPδ inhibition by TSA resulted in increased binding of C/EBPα and C/EBPβ to the COX‐2 promoter. Therefore, TSA has a positive effect on LPS‐induced COX‐2 since it decreases the C/EBPδ level by reducing c‐Jun recruitment by Sp1 to the C/EBPδ promoter, resulting in increased the recruitment of C/EBPα and C/EBPβ to the COX‐2 promoter. J. Cell. Biochem. 110: 1430–1438, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
MicroRNAs (miRNAs) have been suggested as pivotal regulators in the pathological process of cerebral ischemia and reperfusion injury. In this study, we aimed to investigate the role of miR‐135a in regulating neuronal survival in cerebral ischemia and reperfusion injury using an in vitro cellular model induced by oxygen‐glucose deprivation and reoxygenation (OGD/R). Our results showed that miR‐135a expression was significantly decreased in neurons with OGD/R treatment. Overexpression of miR‐135a significantly alleviated OGD/R‐induced cell injury and oxidative stress, whereas inhibition of miR‐135a showed the opposite effects. Glycogen synthase kinase‐3β (GSK‐3β) was identified as a potential target gene of miR‐135a. miR‐135a was found to inhibit GSK‐3β expression, but promote the expression of nuclear factor erythroid 2‐related factor 2 (Nrf2) and downstream signaling. However, overexpression of GSK‐3β significantly reversed miR‐135a‐induced neuroprotective effect. Overall, our results suggest that miR‐135a protects neurons against OGD/R‐induced injury through downregulation of GSK‐3β and upregulation of Nrf2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号