首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Land use and climate change alter biodiversity patterns and ecosystem functioning worldwide. Land abandonment with consequent shrub encroachment and changes in precipitation gradients are known factors in global change. Yet, the consequences of interactions between these factors on the functional diversity of belowground communities remain insufficiently explored. Here, we investigated the dominant shrub effects on the functional diversity of soil nematode communities along a precipitation gradient on the Qinghai–Tibet Plateau. We collected three functional traits (life-history CP value, body mass, and diet) and calculated the functional alpha and beta diversity of nematode communities using kernel density n-dimensional hypervolumes. We found that shrubs did not significantly alter the functional richness and dispersion, but significantly decreased the functional beta diversity of nematode communities in a pattern of functional homogenization. Shrubs benefited nematodes with longer life-history, larger body mass, and higher trophic levels. Moreover, the shrub effects on the functional diversity of nematodes depended strongly on precipitation. Increasing precipitation reversed the effects shrubs have on the functional richness and dispersion from negative to positive but amplified the negative effects shrubs have on functional beta diversity of nematodes. Benefactor shrubs had stronger effects on the functional alpha and beta diversity of nematodes than allelopathic shrubs along a precipitation gradient. A piecewise structural equation model showed that shrubs and its interactions with precipitation indirectly increased the functional richness and dispersion through plant biomass and soil total nitrogen, whereas it directly decreased the functional beta diversity. Our study reveals the expected changes in soil nematode functional diversity following shrub encroachment and precipitation, advancing our understanding of global climate change on nematode communities on the Qinghai–Tibet Plateau.  相似文献   

2.
Identifying patterns and drivers of plant community assembly has long been a central issue in ecology. Many studies have explored the above questions using a trait‐based approach; however, there are still unknowns around how patterns of plant functional traits vary with environmental gradients. In this study, the responses of individual and multivariate trait dispersions of 134 species to soil resource availability were examined based on correlational analysis and torus‐translation tests across four spatial scales in a subtropical forest, China. Results indicated that different degrees of soil resource availability had different effects on trait dispersions. Specifically, limited resource (available phosphorus) showed negative relationships with trait dispersions, non‐limited resource (available potassium) showed positive relationships with trait dispersions, and saturated resource (available nitrogen) had no effect on trait dispersions. Moreover, compared with the stem (wood density) and architectural trait (maximum height), we found that leaf functional traits can well reflect the response of plants to nutrient gradients. Lastly, the spatial scale only affected the magnitude but not the direction of the correlations between trait dispersions and environmental gradients. Overall, the results highlight the importance of soil resource availability and spatial scale in understanding how plant functional traits respond to environmental gradients.  相似文献   

3.
藏北高寒草甸植物群落对土壤线虫群落功能结构的影响   总被引:5,自引:0,他引:5  
薛会英  胡锋  罗大庆 《生态学报》2013,33(5):1482-1494
2011年5-11月,对西藏北部高寒草甸3种典型植物群落下0-30cm范围内不同深度土层的土壤线虫群落进行调查,采用浅盆法分离线虫,土壤性质指标,如pH、含水量、电导率分别采用电位法、烘干法、电导率仪法进行测定,应用营养类群组成、c-p类群结构及营养结构特征指数,以及营养类群、c-p类群与土壤性质之间的关系等特征值分析高寒环境下土壤线虫群落的功能结构特征,以了解高寒环境下植被对土壤线虫群落功能结构的影响.调查共分离得到33038条土壤线虫,隶属于2纲6目51科93属;线虫个体密度平均为847条/100g干土;表聚性明显.研究结果表明,高寒草甸不同植物群落的土壤线虫群落营养类群组成及分布特征均存在一定差异,植食性线虫和食细菌性线虫是调查区域的主要营养类群,不同植物群落间植食性线虫和杂食/捕食性线虫的相对多度差异明显.c-p类群组成结构特征结果表明:3种植物群落的土壤线虫cp2类群均为优势类群,生活策略以r-对策为主;高山嵩草植物群落土壤中的线虫食物资源在3种植物群落中最丰富;藏北嵩草群落土壤线虫数量低的可能原因是线虫食物资源的减少限制了cp1、cp2类群的增殖.PPI值表明:委陵菜群落受扰动的影响程度大于其余两种植被类型,而MI、PPI/MI值及cp5类群数量的结果则表明:委陵菜群落的稳定性较高,受到的干扰在3种植物群落中最少.F/B及NCR值均说明了3种植物群落的土壤有机质分解均主要依靠细菌分解途径.相关性分析结果表明:杂食/捕食性线虫在枯草期明显受到土壤含水量的影响;食真菌性线虫与土壤pH之间的关系密切,在盛长期则明显受到土壤电导率的影响;食细菌性线虫仅在返青期与pH有相关性.不同植物群落下土壤线虫群落功能结构特征的分异显示出线虫指示环境因子影响土壤生态系统的潜力.  相似文献   

4.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.  相似文献   

5.
研究植物群落系统发育和功能性状结构有助于了解植物多样性维持机制及物种间的亲缘关系。甘肃省地理环境复杂,显著而多变的气候梯度形成了区域植被和环境差异,丰富了栖息地类型,具有显著的纵向连通性和纬度隔离性,以甘肃省典型纬度梯度植物群落为研究对象,通过对其进行群落学调查和功能性状测定,计算净亲缘关系指数(Net relatedness index, NRI)和平均成对性状距离(Mean pairwise trait distance, PW)来分析植物群落系统发育结构和功能性状格局对不同纬度的响应。结果表明:(1) Shannon-Weiner多样性指数,物种丰富度,谱系α多样性指数表现出随纬度增加而显著降低的变化趋势(P<0.05),Pielou均匀度指数随纬度的升高没有显著的变化趋势;(2)系统发育结构在高、低纬度上趋于发散状态(NRI<0),在中纬度上又表现出聚集(NRI>0)的谱系结构,表明种间竞争作用减弱,环境过滤作用逐渐增强,随纬度继续升高相似性限制作用在物种聚集过程中占优势;而群落的功能性状结构随着纬度增加表现出与谱系结构相反的状态,因此植物群落的系统发育和功能...  相似文献   

6.
7.
Soil microbial communities play a key role in ecosystem functioning but still little is known about the processes that determine their turnover (β‐diversity) along ecological gradients. Here, we characterize soil microbial β‐diversity at two spatial scales and at multiple phylogenetic grains to ask how archaeal, bacterial and fungal communities are shaped by abiotic processes and biotic interactions with plants. We characterized microbial and plant communities using DNA metabarcoding of soil samples distributed across and within eighteen plots along an elevation gradient in the French Alps. The recovered taxa were placed onto phylogenies to estimate microbial and plant β‐diversity at different phylogenetic grains (i.e. resolution). We then modeled microbial β‐diversities with respect to plant β‐diversities and environmental dissimilarities across plots (landscape scale) and with respect to plant β‐diversities and spatial distances within plots (plot scale). At the landscape scale, fungal and archaeal β‐diversities were mostly related to plant β‐diversity, while bacterial β‐diversities were mostly related to environmental dissimilarities. At the plot scale, we detected a modest covariation of bacterial and fungal β‐diversities with plant β‐diversity; as well as a distance–decay relationship that suggested the influence of ecological drift on microbial communities. In addition, the covariation between fungal and plant β‐diversity at the plot scale was highest at fine or intermediate phylogenetic grains hinting that biotic interactions between those clades depends on early‐evolved traits. Altogether, we show how multiple ecological processes determine soil microbial community assembly at different spatial scales and how the strength of these processes change among microbial clades. In addition, we emphasized the imprint of microbial and plant evolutionary history on today's microbial community structure.  相似文献   

8.
Functional diversity is intimately linked with community assembly processes, but its large‐scale patterns of variation are often not well understood. Here, we investigated the spatiotemporal changes in multiple trait dimensions (“trait space”) along vertical intertidal environmental stress gradients and across a landscape scale. We predicted that the range of the trait space covered by local assemblages (i.e., functional richness) and the dispersion in trait abundances (i.e., functional dispersion) should increase from high‐ to low‐intertidal elevations, due to the decreasing influence of environmental filtering. The abundance of macrobenthic algae and invertebrates was estimated at four rocky shores spanning ca. 200 km of the coast over a 36‐month period. Functional richness and dispersion were contrasted against matrix‐swap models to remove any confounding effect of species richness on functional diversity. Random‐slope models showed that functional richness and dispersion significantly increased from high‐ to low‐intertidal heights, demonstrating that under harsh environmental conditions, the assemblages comprised similar abundances of functionally similar species (i.e., trait convergence), while that under milder conditions, the assemblages encompassed differing abundances of functionally dissimilar species (i.e., trait divergence). According to the Akaike information criteria, the relationship between local environmental stress and functional richness was persistent across sites and sampling times, while functional dispersion varied significantly. Environmental filtering therefore has persistent effects on the range of trait space covered by these assemblages, but context‐dependent effects on the abundances of trait combinations within such range. Our results further suggest that natural and/or anthropogenic factors might have significant effects on the relative abundance of functional traits, despite that no trait addition or extinction is detected.  相似文献   

9.
薛蓓  侯磊  薛会英 《生态学报》2019,39(11):4088-4095
为了研究藏北高寒草甸土壤线虫多样性,于2017年8月,采用Illumina MiSeq测序技术,研究了西藏北部高寒草甸0—25 cm范围内不同深度土层的土壤线虫群落组成与结构特征。结果表明:5个不同深度共获得OTU 990个,隶属于3个纲,7个目,25个科,30个属,刺嘴纲Enoplea为共有优势土壤线虫群落;对样品进行Alpha多样性评价,计算Chao 1指数、Shannon指数和Ace指数,发现5—10 cm的土壤样品群落有较高的丰富度;属水平Heatmap图分析可知20—25、15—20、0—5、5—10、10—15 cm土壤线虫群落的组成相似性有一个递增的趋势。与不同深度藏北高山嵩草(盛长期)线虫群落结构相关性较大的土壤化学指标是K~+、含水率、有机质和Zn~(2+)。研究发现不同深度土壤线虫种类及丰度存在一定的差异,可为研究藏北高寒草地土壤线虫群落特点提供依据。  相似文献   

10.
It has been predicted that spatial beta diversity shows a decreasing trend in the Anthropocene due to increasing human impact, causing biotic homogenisation. We aimed to discover if vascular aquatic macrophyte communities show different spatial patterns in beta diversity in relation to land use and environmental characteristics in different decades from 1940s to 2010s. We aimed to discover if spatial structures differ between species-, phylogeny- and functional-based beta diversity. We used presence–absence data of aquatic macrophytes from five decades from small boreal lakes. We utilized generalised dissimilarity modelling to analyse spatial patterns in beta diversity in relation to environmental gradients. We found that lake elevation and pH were the most important variables in each decade, while land use was not particularly important in shaping beta diversity patterns. We did not find signs of a decreasing trend in spatial beta diversity in our study area during the past 70 yr. We did not find signs of either biotic homogenisation or biotic differentiation (taxonomic, phylogenetic or functional). Vascular aquatic macrophyte communities showed only slightly different beta diversity patterns in relation to human impact across decades. The patterns of different facets of beta diversity diverged only slightly from each other. Lake position in the landscape, reflecting both natural connectivity and lake characteristics, explained the patterns found in beta diversity, probably because our study area has faced only modest changes in land use from 1940s to 2010s when compared globally. Our study highlights the fact that biotic homogenisation is not an unambiguous process acting similarly at all spatial and temporal scales or in different environments and different organism groups.  相似文献   

11.
12.
13.
14.
15.
The elevational alpha biodiversity gradient in mountain regions is one of the well‐known ecological patterns, but its beta diversity pattern remains poorly known. Examining the beta diversity and its components could enhance the understanding of community assembly mechanism. We studied the beta diversity pattern of the soil enchytraeids along a distinct elevational gradient (705–2,280 m) on the Changbai Mountain, the best‐preserved mountain in northeastern China. The overall abundance‐based community dissimilarity was relatively high (ca. 0.70), largely due to the balanced‐variation component (85%). The overall dissimilarity and its balanced‐variation (substitution) component were related to both local environmental heterogeneity and elevational distance, with the environmental relationships being stronger. In contrast, the abundance‐gradient (subsets) component was not related to the two gradients. The same important spatial and environmental variables were detected in structuring overall dissimilarity and substitution component, different from that in subsets component. Variation partitioning analysis showed that environmental control played a more important role than spatial (vertical and horizontal) factors in structuring the patterns of overall beta diversity and its two components. The predictive power of multivariate analysis was higher for the substitution component (nearly 50%) and overall dissimilarity (35%), but much lower for subsets components (<4%). These findings implied that abundance‐based beta diversity patterns of the soil enchytraeids were the results of different ecological processes (e.g., environmental sorting and dispersal limitation), operating in the two antithetic components. Our study showed the substitution and loss of individuals reflecting different ecological processes and highlights the importance of partitioning beta diversity in assessing biodiversity patterns and their causes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号