共查询到20条相似文献,搜索用时 9 毫秒
1.
Jason E. Adolf Allen R. Place Diane K. Stoecker Lawrence W. Harding 《Journal of phycology》2007,43(6):1259-1270
We examined whether fatty acid (FA) composition changed when Karlodinium veneficum (D. Ballantine) J. Larsen (Dinophyceae) was grown phototrophically or mixotrophically on Storeatula major Butcher ex D. R. A. Hill (Cryptophyceae). We hypothesized that the FA composition of mixotrophic K. veneficum would not change relative to the FA composition of phototrophic K. veneficum. As in other phototrophic dinoflagellates, octadecapentaenoic acid (18:5n3) represented 9% to 20% of total FA in K. veneficum and was enriched within chloroplast‐associated galactolipid classes. The 18:5n3 content showed a highly significant positive correlation (r2 = 0.95) with chl a content and a highly significant negative correlation with growth rate (r2 = 0.88). A previously undescribed chloroplast galactolipid molecular species, digalactosyldiacylglycerol (DGDG; 18:5n3/18:5n3), was a dominant structural lipid in K. veneficum. Docosahexaenoic acid (22:6n3) represented 14% to 19% of total K. veneficum FA and was enriched within phospholipids. In the prey S. major, 18:5n3 was not present, but octadecatetraenoic acid (18:4n3) and α‐linolenic acid (18:3n3) represented approximately 50% of total FA and were enriched within chloroplast‐associated galactolipid classes. Eicosapentaenoic acid (20:5n3) and 22:6n3 represented approximately 18% of total FA in S. major and were enriched within phospholipids. The FA profile of mixotrophic K. veneficum, compared to phototrophic K. veneficum, showed elevated levels of 18:3n3, 18:4n3, and 20:5n3, and lower but persistent levels of 18:5n3. Production to ingestion (P:I) ratios >1 for major polyunsaturated fatty acids (PUFAs) indicated that direct assimilation from prey under balanced growth could not support rates of PUFA production in mixotrophic K. veneficum. These data suggest that the plastid plays a continuing and essential role in lipid metabolism during mixotrophic growth. 相似文献
2.
The function of the ocelloid and piston in the dinoflagellate Erythropsidinium (Gymnodiniales,Dinophyceae) 下载免费PDF全文
Fernando Gómez 《Journal of phycology》2017,53(3):629-641
The marine dinoflagellate Erythropsidinium possesses an ocelloid, the most elaborate photoreceptor organelle known in a unicellular organism, and a piston, a fast contractile appendage unknown in any other organism. The ocelloid is able to rotate, often before the cell swims. The ocelloid contains lenses that function to concentrate light. The flagellar propulsion is atrophied, and the piston is responsible for locomotion through successive extensions and contractions. During the “locomotion mode”, the contraction is ~4 times faster than the extension. The piston attained up to 50 mm · s?1 and the cell jumps backwards at ?4 mm · s?1, while during the piston extension the cell moves forwards. The net speed of ~?1 mm · s?1 is faster than other dinoflagellates. The piston usually moved in the “static mode” without significant cell swimming. This study suggests that the piston is also a tactile organelle that scans the surrounding waters for prey. Erythropsidinium feeds on copepod eggs by engulfing. The end of the piston possesses a “suction cup” able to attach the prey and place it into the posterior cavity for engulfing. The cylindrical shape of Erythropsidinium, and the anterior position of the ocelloid and nucleus, are morphological adaptations that leave space for the large vacuole. Observations are provided on morphological development during cell division. Most of the described species of Erythropsidinium apparently correspond to distinct life stages of known species, and the genus Greuetodinium (=Leucopsis) corresponds to an earlier division stage. 相似文献
3.
Molecular Phylogeny of the Parasitic Dinoflagellate Chytriodinium within the Gymnodinium Clade (Gymnodiniales,Dinophyceae) 下载免费PDF全文
The dinoflagellate genus Chytriodinium, an ectoparasite of copepod eggs, is reported for the first time in the North and South Atlantic Oceans. We provide the first large subunit rDNA (LSU rDNA) and Internal Transcribed Spacer 1 (ITS1) sequences, which were identical in both hemispheres for the Atlantic Chytriodinium sp. The first complete small subunit ribosomal DNA (SSU rDNA) of the Atlantic Chytriodinium sp. suggests that the specimens belong to an undescribed species. This is the first evidence of the split of the Gymnodinium clade: one for the parasitic forms of Chytriodiniaceae (Chytriodinium, Dissodinium), and other clade for the free‐living species. 相似文献
4.
《Harmful algae》2014
The family Kareniaceae is mostly known in France for recurrent blooms of Karenia mikimotoi in the Atlantic, English Channel, and Mediterranean Sea and for the unusual green discoloration in the saltwater lagoon of Diana (Corsica) caused by Karlodinium corsicum in April 1994. In terms of diversity, this taxonomic group was long overlooked owing to the difficult identification of these small unarmored dinoflagellates. In this study, thanks to the molecular characterization performed on single cells from field samples and cultures, twelve taxonomic units were assigned to the known genera Karenia, Karlodinium and Takayama, whereas one could not be affiliated to any described genus. The molecular phylogeny inferred from the D1–D2 region of the LSU rDNA showed that five of them formed a sister taxon of a known species, and could not be identified at species-level, on the basis of molecular analysis only. Among these latter taxa, one Karlodinium which was successfully cultured was investigated by studying the external morphological features (using two procedures for cells fixation), ultrastructure, pigment composition, and haemolytic activity. The results of our analyses corroborate the genetic results in favour of the erection of Karlodinium gentienii sp. nov., which possesses an internal complex system of trichocysts connected to external micro-processes particularly abundant in the epicone, and a peculiar pigment composition. In addition, preliminary assays showed a haemolytic activity. 相似文献
5.
Lepidodinium chlorophorum is a green-pigmented dinoflagellate with an aberrant, tertiary plastid of chlorophyte ancestry rather than the typical red algal, secondary endosymbiont found in the vast majority of photosynthetic dinoflagellates. To date, only one published study exists on the galactolipids of L. chlorophorum, with nothing known about other lipid classes, including sterols. Our objectives were to examine the sterol composition of L. chlorophorum to determine if it produces any unique sterols with the potential to serve as biomarkers, and to compare it to members of the Chlorophyceae to determine if it has inherited any signature green algal sterols from its chlorophyte-derived endosymbiont. We have found that L. chlorophorum produces 6 sterols, all with a 4α-methyl substituent and none of which are known to occur in the Chlorophyceae. Rather, the sterols produced by L. chlorophorum place it within a group of dinoflagellates that have the common dinoflagellate sterols, dinosterol and dinostanol, as part of their sterol composition. 相似文献
6.
Bourke BP Nagaki SS Bergo ES Cardoso Jda C Sallum MA 《Memórias do Instituto Oswaldo Cruz》2011,106(6):705-715
Phylogenetic relationships among species of the Myzorhynchella Section of Anopheles (Nyssorhynchus) were investigated using the nuclear ribosomal DNA second internal transcribed spacer (ITS2), the nuclear whitegene and mitochondrial cytochrome oxidase subunit I (COI) regions. The recently described Anopheles pristinus and resurrected Anopheles guarani were also included in the study. Bayesian phylogenetic analyses found Anopheles parvus to be the most distantly related species within the Section, a finding that is consistent with morphology. An. pristinus and An. guarani were clearly resolved from Anopheles antunesi and Anopheles lutzii, respectively. An. lutzii collected in the same mountain range as the type locality were found within a strongly supported clade, whereas individuals from the southern state of Rio Grande do Sul, tentatively identified as An. lutzii based on adult female external morphology, were distinct from An. lutzii, An. antunesi and from each other, and may therefore represent two new sympatric species. A more detailed examination of An. lutzii sensu latoalong its known geographic range is recommended to resolve these anomalous relationships. 相似文献
7.
Identification of the resting cyst of Cochlodinium polykrikoides Margalef (Dinophyceae,Gymnodiniales) in Korean coastal sediments 下载免费PDF全文
Zhun LI Myung‐Soo Han Kazumi Matsuoka So‐Young Kim Hyeon Ho Shin 《Journal of phycology》2015,51(1):204-210
This study provides the first morphological features of resting cysts of Cochlodinium polykrikoides collected from Korean coastal sediments. Evidence for the existence of resting cysts of C. polykrikoides is based on the morphological and molecular phylogenetic data of the germinated cells and a resting cyst. The morphology of the resting cysts differed from that reported previously in sediments and culture experiments. The distinct feature is that the cyst body was covered by the reticulate ornaments and spines. 相似文献
8.
9.
Cochlodinium fulvescens sp. nov. (Gymnodiniales, Dinophyceae), a new chain-forming unarmored dinoflagellate from Asian coasts 总被引:1,自引:0,他引:1
Cellular morphology and the phylogenetic position of a new unarmored photosynthetic dinoflagellate Cochlodinium fulvescens Iwataki, Kawami et Matsuoka sp. nov. were examined by light microscopy and molecular phylogenetic analyses based on partial large subunit ribosomal DNA (LSU rDNA) and small subunit ribosomal DNA (SSU rDNA) sequences. The cells of C. fulvescens closely resemble C. polykrikoides, one of the most harmful red tide forming dinoflagellates, due to it possessing a cingulum encircling the cell approximately twice, a spherical nucleus positioned in the anterior part of the cell and an eyespot‐like orange pigmented body located in the dorsal side of the epicone, as well as formation of cell‐chains. However, this species is clearly distinguished from C. polykrikoides based on several morphological characteristics, namely, cell size, shape of chloroplasts and the position of narrow sulcus situated in the cell surface. The sulcus of C. fulvescens is located at the intermediate position of the cingulum in the dorsal side, whereas that of C. polykrikoides is situated immediately beneath the cingulum. LSU rDNA phylogenies indicated that C. fulvescens is clearly distinct from, but closely related to C. polykrikoides among dinoflagellates. 相似文献
10.
Jeffrey D. Leblond Jeremy L. Dahmen Rebecca L. Seipelt Matthew J. Elrod‐Erickson Rodney Kincaid James C. Howard Terence J. Evens Peter J. Chapman 《Journal of phycology》2005,41(2):311-321
The Chlorarachniophyceae are unicellular eukaryotic algae characterized by an amoeboid morphology that may be the result of secondary endosymbiosis of a green alga by a nonphotosynthetic amoeba or amoeboflagellate. Whereas much is known about the phylogeny of chlorarachniophytes, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, four organisms from three genera were examined for their fatty acid and sterol composition. Fatty acids from lipid fractions containing chloroplast‐associated glycolipids, storage triglycerides, and cytoplasmic membrane‐associated polar lipids were characterized. Glycolipid‐associated fatty acids were of limited composition, principally eicosapentaenoic acid [20:5(n‐3)] and hexadecanoic acid (16:0). Triglyceride‐associated fatty acids, although minor, were found to be similar in composition. The polar lipid fraction was dominated by lipids that did not contain phosphorus and had a more variable fatty acid composition with 16:0 and docosapentaenoic acid [22:5(n‐3)] dominant along with a number of minor C18 and C20 fatty acids. Crinosterol and one of the epimeric pair poriferasterol/stigmasterol were the sole sterols. Several genes required for synthesis of these sterols were computationally identified in Bigelowiella natans Moestrup. One sterol biosynthesis gene showed the greatest similarity to SMT1 of the green alga, Chlamydomonas reinhardtii. However, homologues to other species, mostly green plant species, were also found. Further, the method used for identification suggested that the sequences were transferred to a genetic compartment other than the likely original location, the nucleomorph nucleus. 相似文献
11.
Gómez F 《European journal of protistology》2008,44(4):291-298
The distribution and morphology of the dinoflagellate Erythropsidinium (=Erythropsis) was studied in the vicinity of the Kuroshio and Oyashio Currents, the Philippine, Celebes, Sulu and South China Seas, western and central equatorial and southeast Pacific Ocean. Ninety-four specimens were observed, most of them collected from depths of less than 90m. The highest abundance (15cellsL(-1)) was recorded in the north Philippine Sea in May (32 degrees N, 138 degrees E, 30-m depth). Twenty-four specimens were found in a station in the offshore Perú-Chile Current (31 degrees 52'S, 91 degrees 24'W). The transition regions between open warm waters and productive currents or upwellings seem to favour the abundance of Erythropsidinium. Specimens with duplicate pistons, with two protuberant ocelloids, and specimens with a piston that attains up to 20 times the body length are illustrated for the first time. All the specimens have been ascribed to the type species, Erythropsidinium agile, until stable taxonomical criteria are established for the species diagnosis. Despite the complexity of its organelles, the ocelloid and piston, the competitiveness of Erythropsidinium in the pelagic ecosystem seems to be low. 相似文献
12.
Mitsunori Iwataki Hisae Kawami Koichiro Mizushima Christina M. Mikulski Gregory J. Doucette Juan R. Relox Jr. Ann Anton Yasuwo Fukuyo Kazumi Matsuoka 《Harmful algae》2008,7(3):271
Phylogenetic relationships among chain-forming Cochlodinium species, including the harmful red tide forming dinoflagellate Cochlodinium polykrikoides, were investigated using specimens collected from coastal waters of Canada, Hong Kong, Japan, Korea, Malaysia, México, Philippines, Puerto Rico, and USA. The phylogenetic tree inferred from partial (D1–D6 regions) large subunit ribosomal RNA gene (LSU rDNA) sequences clearly differentiated between C. polykrikoides and a recently described species, Cochlodinium fulvescens. Two samples collected from the Pacific coasts of North America (British Columbia, Canada and California, USA) having typical morphological characters of C. fulvescens such as the sulcus located in the intermediate region of the cingulum, were closely related to C. fulvescens from western Japan in the phylogenetic tree. Cochlodinium polykrikoides formed a monophyletic group positioned as a sister group of the C. fulvescens clade with three well-supported sub-clades. These three clades were composed of (1) East Asian, including specimens collected from Hong Kong, western Japan, and southern Korea, (2) Philippines, from Manila Bay, Philippines and Omura Bay, Japan, and (3) American/Malaysian, from the Atlantic coasts of USA, the Pacific coast of México, Puerto Rico, and Borneo Island, Malaysia. Each of these clades is considered to be a so-called “ribotype” representing the population inhabiting each region, which is distinguished based on ribosomal RNA gene sequences in the species despite similarities in their morphological characters. 相似文献
13.
《Harmful algae》2015
Recent studies of dinoflagellates have reported that blooms can be closely related to the characteristics of the associated bacteria, but studies of the correlation between the toxic dinoflagellate, Cochlodinium polykrikoides and their associated bacterial community composition has not been explored. To understand this correlation, changes in bacterial community structure through the evolution of a C. polykrikoides bloom in Korean coastal waters via clone library analysis were investigated. Although there were no apparent changes in physio-chemical factors during the onset of the C. polykrikoides bloom, the abundance of bacteria bourgeoned in parallel with C. polykrikoides densities. Alpha-, gamma-proteobacteria and Flavobacteria were found to be dominant phyletic groups during C. polykrikoides blooms. The proportion of gamma-proteobacteria was lower (11.8%) during peak of the bloom period compared to the post-bloom period (26.2%). In contrast, alpha-proteobacteria increased in dominance during blooms. Among the alpha-proteobacteria, members of Rhodobacterales abruptly increased from 38% of the alpha-proteobacteria before the bloom to 74% and 56% during the early bloom and peak bloom stages, respectively. Moreover, multiple sites concurrently hosting C. polykrikoides blooms also contained high portions of Rhodobacterales and principal component analysis (PCA) demonstrated that Rhodobacterales had a positive, significant correlation with C. polykrikoides abundances (p ≤ 0.01, Pearson correlation coefficients). Collectively, this study reveals the specific clades of bacteria that increase (Rhodobacterales) and decrease (gamma-proteobacteria) in abundance C. polykrikoides during blooms. 相似文献
14.
Ben D. Mooney Peter D. Nichols Miguel F. De Salas Gustaaf M. Hallegraeff 《Journal of phycology》2007,43(1):101-111
The lipid class, fatty acid, and sterol composition of eight species of ichthyotoxic marine gymnodinioid dinoflagellate (Karenia, Karlodinium, and Takayama) species was examined. The major lipid class in all species was phospholipid (78%–95%), with low levels of triacylglycerol (TAG; 0%–16%) and free fatty acid (FFA; 1%–11%). The common dinoflagellate polyunsaturated fatty acids (PUFA), octadecapentaenoic acid (OPA 18:5ω3), and docosahexaenoic acid (DHA 22:6ω3), were present in all species in varying amounts (14%–35% and 8%–23%, respectively). The very‐long‐chain PUFA (VLC‐PUFA) 28:7ω6 and 28:8ω3 were present at low levels (<1%), and the ratio of these fatty acids may be a useful chemotaxonomic marker at the species level. The typical dinoflagellate sterol dinosterol was absent from all species tested. A predominance of the 4‐methyl and 4‐desmethyl Δ8(14) sterols in all dinoflagellate species included 23‐methyl‐27‐norergosta‐8(14),22‐dien‐3β‐ol (Karenia papilionacea A. J. Haywood et Steid, 59%–66%); 27‐nor‐(24R)‐4α‐methyl‐5α‐ergosta‐8(14),22‐dien‐3β‐ol, brevesterol, (Takayama tasmanica de Salas, Bolch et Hallegraeff 84%, Takayama helix de Salas, Bolch, Botes et Hallegraeff 71%, Karenia brevis (C. C. Davis) G. Hansen et Moestrup 45%, Karlodinium KDSB01 40%, Karenia mikimotoi (Miyake et Kominami ex Oda) G. Hansen et Moestrup 38%); and (24R)‐4α‐methyl‐5α‐ergosta‐8(14),22‐dien‐3β‐ol, gymnodinosterol, (K. mikimotoi 48%, Karenia umbella de Salas, Bolch et Hallegraeff 59%, Karlodinium veneficum (D. L. Ballant.) J. Larsen 71%–83%). In Takayama species, five steroid ketones were identified, including for the first time the 3‐keto form of brevesterol and gymnodinosterol. These results indicate a biochemical link between sterol and steroid ketone biosynthesis, suggesting that selected dinoflagellates can make a significant contribution to ketones in marine sediments. The presence of steroid ketones, specific sterols, and fatty acids, and the ratio of VLC‐PUFA may prove to be a useful chemotaxonomic tool for distinguishing between morphologically similar species. The relative levels of the PUFA, OPA, and DHA, coupled with the potential inhibitory action of Δ8(14) sterols, may provide an insight into the ichthyotoxicity of these bloom‐forming dinoflagellates. 相似文献
15.
《Harmful algae》2017
Photosynthetic species of the dinoflagellate genus Cochlodinium such as C. polykrikoides, one of the most harmful bloom-forming dinoflagellates, have been extensively investigated. Little is known about the heterotrophic forms of Cochlodinium, such as its type species, Cochlodinium strangulatum. This is an uncommon, large (∼200 μm long), solitary, and phagotrophic species, with numerous refractile bodies, a central nucleus enclosed in a distinct perinuclear capsule, and a cell surface with fine longitudinal striae and a circular apical groove. The morphology of C. polykrikoides and allied species is different from the generic type. It is a bloom-forming species with single, two or four-celled chains, small cell size (25–40 μm long) with elongated chloroplasts arranged longitudinally and in parallel, anterior nucleus, eye-spot in the anterior dorsal side, and a cell surface smooth with U-shaped apical groove. Phylogenetic analysis based on LSU rDNA sequences revealed that C. strangulatum and C. polykrikoides/C. fulvescens formed two distally related, independent lineages. Based on morphological and phylogenetic analyses, the diagnosis of Cochlodinium is emended and C. miniatum is proposed as synonym of C. strangulatum. The new genus Margalefidinium gen. nov., and new combinations for C. catenatum, C. citron, C. flavum, C. fulvescens and C. polykrikoides are proposed. 相似文献
16.
Quantitative real‐time PCR detection of a harmful unarmoured dinoflagellate,Karlodinium australe (Dinophyceae) 下载免费PDF全文
Nyuk Fong Kon Winnie L. S. Lau Kieng Soon Hii Ing Kuo Law Sing Tung Teng Hong Chang Lim Kazuya Takahashi Haifeng Gu Po Teen Lim Chui Pin Leaw 《Phycological Research》2017,65(4):291-298
We investigated a harmful algal bloom (HAB) associated with the massive fish kills in Johor Strait, Malaysia, which recurred a year after the first incident in 2014. This incident has urged for the need to have a rapid and precise method in HAB monitoring. In this study, we develop a SYBR green‐based real‐time PCR (qPCR) to detect the culpable dinoflagellate species, Karlodinium australe. Species‐specific qPCR primers were designed in the gene region of the second internal transcribed spacer of the ribosomal RNA gene (rDNA). The species specificity of the primers designed was evaluated by screening on the non‐target species (Karlodinium veneficum, Takayama spp., and Karenia spp.) and no cross‐detection was observed. The extractable gene copies per cell of K. australe determined in this study were 19 998 ± 505 (P < 0.0001). Estimation of cell densities by qPCR in the experimental spiked samples showed high correlation with data determined microscopically (R2 = 0.93). Using the qPCR assay developed in this study, we successfully detected the 2015 bloom species as K. australe. Single‐cell PCR and rDNA sequencing from the field samples further confirmed the finding. With the sensitivity as low as five cells, the qPCR assay developed in this study could effectively and rapidly detect cells of K. australe in the environmental samples for monitoring purpose. 相似文献
17.
《Harmful algae》2013
Although the diversity of dinoflagellates has been intensively studied in several locations in the Mediterranean Sea since the 1950s, it is only during the last two decades that the morphotype of the toxic unarmoured dinoflagellate Cochlodinium polykrikoides Margalef has been detected, coinciding with its apparent worldwide expansion in marine coastal waters. In this study, vegetative cells of C. polykrikoides morphotype from the Catalan coast (NW Mediterranean Sea) were detected and isolated, and the DNA from collected cells was sequenced. While in the Mediterranean Sea, detections are scarce and C. polykrikoides is consistently present at low concentrations, we reported exceptional blooms of this species, in which the maximum abundance reached 2 × 104 cells L−1. Partial LSU rDNA region sequences showed that most C. polykrikoides populations from the Catalan coast formed a new differentiated ribotype, but others were included within the ‘Philippines’ ribotype, demonstrating their coexistence in the Mediterranean Sea. Thus, the current biogeographic nomenclature of the ribotypes is likely to be invalid with respect to the available information from populations comprising the ‘Philippines’ ribotype. The phylogeny suggests the existence of cryptic species that should be evaluated for species-level status. Accordingly, the ribotype determination must be carefully evaluated for all detections and bloom events, since accurate characterization of the morphology, ecophysiology and distribution of the ribotypes are not well resolved. 相似文献
18.
Reductions in the growth light level (40 to 6 μmol m-2 s-1) resulted in increases in chlorophyll and protein per cell for all of the species examined. Only Dunaliella tertiolecta exhibited a reduction in chlorophyll a:b ratio with decreases in the photon flux density. However, the specific absorption coefficient (ā? i ) normalized to chlorphyll a (ā? a remained invariant for all of the microalgae studied. Constant values for the specific absorption coefficient normalized to the total pigment content (ā? a+b ) were also found for the species Chlamydomonas rheinhardii, Euglena viridis and Scenedesmus obliquus. In contrast ā? a+b for D. tertiolecta decreased with a reduction in light level due to an increase in the proportion of chlorophyll b. Differences in ā? i were related to cell size and pigment content and possible reasons for the constancy of ā? a discussed. Increases in the absorption cross sections (¯sQ a ) were also found at reduced light levels due to an increase in the absorptance per cell (αcell). The lower αcell for D. tertiolecta, compared with C. rheinhardii was exactly compensated for by a larger light-capturing area. Although the increase in αcell does not compensate for the reduction in the incident light level, it does reduce this range by half on an absorbed light basis. 相似文献
19.
Jahnke LL 《FEMS microbiology letters》1992,93(3):209-212
Growth of Methylococcus capsulatus (Bath) at temperatures ranging from 30 to 50 degrees C resulted in changes to the whole cell lipid constituents. As temperature was lowered, the overall proportion of hexadecenoic acid (C16:1) increased, and the relative proportions of the delta 9, delta 10 and delta 11 C16:1 double bond positional isomers changed. Methyl sterol content also increased as the growth temperature was lowered. The highest amounts of methyl sterol were found in 30 degrees C cells and the lowest in 50 degrees C cells (sterol-phospholipid ratios of 0.077 and 0.013, respectively). The data are consistent with a membrane modulating role for the sterol produced by this prokaryotic organism. 相似文献
20.
Role of Modular Polyketide Synthases in the Production of Polyether Ladder Compounds in Ciguatoxin‐Producing Gambierdiscus polynesiensis and G. excentricus (Dinophyceae) 下载免费PDF全文
Gurjeet S. Kohli Katrina Campbell Uwe John Kirsty F. Smith Santiago Fraga Lesley L. Rhodes Shauna A. Murray 《The Journal of eukaryotic microbiology》2017,64(5):691-706