首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Climate change can affect plant–pollinator interactions in a variety of ways, but much of the research attention has focused on whether independent shifts in phenology will alter temporal overlap between plants and pollinators. Here I review the research on plant–pollinator mismatch, assessing the potential for observational and experimental approaches to address particular aspects of the problem. Recent, primarily observational studies suggest that phenologies of co‐occurring plants and pollinators tend to respond similarly to environmental cues, but that nevertheless, certain pairs of interacting species are showing independent shifts in phenology. Only in a few cases, however, have these independent shifts been shown to affect population vital rates (specifically, seed production by plants) but this largely reflects a lack of research. Compared to the few long‐term studies of pollination in natural plant populations, experimental manipulations of phenology have yielded relatively optimistic conclusions about effects of phenological shifts on plant reproduction, and I discuss how issues of scale and frequency‐dependence in pollinator behaviour affect the interpretation of these ‘temporal transplant’ experiments. Comparable research on the impacts of mismatch on pollinator populations is so far lacking, but both observational studies and focused experiments have the potential to improve our forecasts of pollinator responses to changing phenologies. Finally, while there is now evidence that plant–pollinator mismatch can affect seed production by plants, it is still unclear whether this phenological impact will be the primary way in which climate change affects plant–pollinator interactions. It would be useful to test the direct effects of changing climate on pollinator population persistence, and to compare the importance of phenological mismatch with other threats to pollination.  相似文献   

2.
Pollinator‐mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta‐analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other's pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator‐mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen‐transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.  相似文献   

3.
The interplay between insect and plant traits outlines the patterns of pollen transfer and the subsequent plant reproductive fitness. We studied the factors that affect the pollination efficiency of a pollinator community of Dictamnus albus L. by evaluating insect behaviour and morphological characteristics in relation to flowering phenology. In order to extrapolate the pollinator importance of single taxa and of the whole pollinator guild, we calculated an index distinguishing between potential (PPI) and realized (RPI) pollinator importance. Although the pollinator species spectrum appeared rather constant, we found high intra‐ and inter‐annual variability of pollinator frequency and importance within the insect community. Flower visitation rate strictly depended on insect abundance and on the overlap between their flying period and flower blooming. All the pollinators visited flowers from the bottom to the top of the racemes, excluding intra‐plant geitonogamous pollination, and most of them showed high pollen fidelity. Only medium large‐sized bees could contact the upward bending stiles while feeding on nectar, highlighting a specialisation of the plant towards bigger pollinators. Moreover, we found evidence of functional specialisation, since all pollinators were restricted to a single taxonomic group (order: Hymenoptera; superfamily: Apoidea). Both the PPI and RPI indices indicate Habropoda tarsata as the most important pollinator of D. albus. Following hand cross‐pollination experiments we revealed the presence of pollination limitation in 1 of the 3 years of field study. We discuss this result in relation to flowering abundance and to possible mismatches of phenological periods between plants and insects.  相似文献   

4.
The strength of interactions between plants for pollination depends on the abundance of plants and pollinators in the community. The abundance of pollinators may influence plant associations and densities at which individual fitness is maximized. Reduced pollinator visitation may therefore affect the way plant species interact for pollination. We experimentally reduced pollinator visitation to six pollinator‐dependent species (three from an alpine and three from a lowland community in Norway) to study how interactions for pollination were modified by reduced pollinator availability. We related flower visitation, pollen limitation and seed set to density of conspecifics and pollinator‐sharing heterospecifics inside 30 dome‐shaped cages partially covered with fishnet (experimental plots) and in 30 control plots. We expected to find stronger interactions between plants in experimental compared to controls plots. The experiment modified plant–plant interactions for pollination in all the six species; although for two of them neighbourhood interactions did not affect seed set. The pollen limitation and seed set data showed that reduction of pollinator visits most frequently resulted in novel and/or stronger interactions between plants in the experimental plots that did not occur in the controls. Although the responses were species‐specific, there was a tendency for increasing facilitative interactions with conspecific neighbours in experimental plots where pollinator availability was reduced. Heterospecifics only influenced pollination and fecundity in species from the alpine community and in the experimental plots, where they competed with the focal species for pollination. The patterns observed for visitation rates differed from those for fecundity, with more significant interactions between plants in the controls in both communities. This study warns against the exclusive use of visitation data to interpret plant–plant interactions for pollination, and helps to understand how plant aggregations may buffer or intensify the effects of a pollinator loss on plant fitness.  相似文献   

5.
Plant species sharing pollinators may compete through pollination. This type of competition may lead to overdispersed flowering phenologies. However, phenological segregation is difficult to detect in seasonal climates. We compared patterns of phenological overlap in assemblages of ornithophilous plants from three localities of the temperate forest of southern South America with those generated by four different null models. These species were all visited and presumably pollinated by a single species, the hummingbird Sephanoides sephaniodes, which makes this situation ideal to evaluate the role of pollination‐mediated competition. For one site, we compiled data on flowering phenologies for three different years. Three models considered the flowering period of the whole assemblage of ornithophilous plants as the phenological window within which flowering phenologies were randomized, but made no further assumptions on how species should be distributed within that temporal frame. The fourth model assigned differential probabilities to different time intervals based on the flowering onset of non‐ornithophilous plant species. Observed mean pairwise overlaps for all localities and years were well within the interval defined by the 2.5 and 97.5% percentiles of the randomized distribution of expected mean pairwise overlaps according to models 1–3. However, model 4 showed a consistent trend towards overdispersion of ornihophilous phenologies, which show a shift towards mid‐ to late‐summer flowering. Thus, to the extent that the distribution of flowering of non‐ornithophilous species reflects the constraints imposed by a highly seasonal climate, our results provide support to the proposal that pollinator sharing may cause evolutionary displacement or ecological sorting of flowering phenologies. Other factors, such as phylogenetic inertia, could also contribute to explain extant phenological patterns in the highly endemic ornithophilous flora of the temperate forest of southern South America.  相似文献   

6.

Questions

In animal‐mediated pollination, pollinators can be regarded as a limiting resource for which entomophilous plant species might interact to assure pollination, an event pivotal for their reproduction and population maintenance. At community level, spatially aggregated co‐flowering species can thus be expected to exhibit suitable suites of traits to avoid competition and ensure pollination. We explored the problem by answering the following questions: (1) are co‐flowering species specialized on different guilds of pollinators; (2) do co‐flowering pollinator‐sharing species segregate spatially; and (3) do co‐flowering pollinator‐sharing species that diverge in anther position spatially aggregate more than those that converge in anther position?

Study Site

Euganean Hills, NE Italy.

Methods

Plant composition, flowering phenology and interactions between each entomophilous plant species and pollinating insects were monitored every 15 days in 40 permanent plots placed in an area of 16 ha. We quantified the degree of flowering synchrony, pollinator‐sharing and spatial aggregation between each pair of entomophilous species. We then tested the relationship between the degree of co‐flowering, pollinator‐sharing and spatial aggregation, and between spatial aggregation and anther position.

Results

Entomophilous species converged, at least partially in flowering time, and the phenological synchronization of flowering was significantly associated with the sharing of pollinator guilds. Co‐flowering pollinator‐sharing species segregated spatially. Furthermore, co‐flowering pollinator‐sharing species that diverged in anther position aggregated more than those that converged in anther position.

Conclusions

Reproductive traits that facilitate the co‐existence of co‐flowering species include specialization on different pollinator guilds and a phenological displacement of the flowering time. Furthermore, in circumstances of increased competition due to phenological synchronization, pollinator‐sharing and spatial aggregation, the chance of effective pollination might depend on differences in anther position, resulting in a divergent pollen placement on pollinator bodies. One of the most interesting results we obtained is that the presence of one mechanism does not preclude the operation of others, and each plant species can simultaneously exhibit different strategies. Although more studies are needed, our results can provide additional information about plant–plant interactions and provide new insights into mechanisms allowing the co‐existence of a high number of plant species in local communities.
  相似文献   

7.
Climate change can alter species phenologies and therefore disrupt species interactions. Habitat destruction can damage biodiversity and population viability. However, we still know very little about the potential effects of these two factors on the diversity and structure of interaction networks when both act simultaneously. Here we developed a mutualistic metacommunity model to explore the effects of habitat destruction and phenological changes on the diversity and structure of plant–pollinator networks. Using an empirical data set of plant and pollinator interactions and their duration in days, we simulated increasing levels of habitat destruction, under projected scenarios of phenological shifts as well for historically recorded changes in phenologies. On one hand, we found that habitat destruction causes catastrophic collapse in global diversity, as well as inducing alternative states. On the other hand, phenological shifts tend to make interactions weaker, increasing local extinction rates. Together, habitat destruction and phenological changes act synergistically, making metacommunities even more vulnerable to global collapse. Metacommunities are also more vulnerable to collapses under scenarios of historical change, in which phenologies are shortened, not just shifted. Furthermore, connectance and nestedness tends to decrease gradually with habitat destruction before the global collapse. Small phenological shifts can raise connectance slightly, due novel interactions appearing in a few generalist species, but larger shifts always reduce connectance. We conclude that the robustness of mutualistic metacommunities against habitat destruction can be greatly impaired by the weakening of positive interactions that results from the loss of phenological overlap.  相似文献   

8.
Climate change is altering the timing of life history events in a wide array of species, many of which are involved in mutualistic interactions. Because many mutualisms can form only if partner species are able to locate each other in time, differential phenological shifts are likely to influence their strength, duration and outcome. At the extreme, climate change‐driven shifts in phenology may result in phenological mismatch: the partial or complete loss of temporal overlap of mutualistic species. We have a growing understanding of how, when, and why phenological change can alter one type of mutualism–pollination. However, as we show here, there has been a surprising lack of attention to other types of mutualism. We generate a set of predictions about the characteristics that may predispose mutualisms in general to phenological mismatches. We focus not on the consequences of such mismatches but rather on the likelihood that mismatches will develop. We explore the influence of three key characteristics of mutualism: 1) intimacy, 2) seasonality and duration, and 3) obligacy and specificity. We predict that the following characteristics of mutualism may increase the likelihood of phenological mismatch: 1) a non‐symbiotic life history in which co‐dispersal is absent; 2) brief, seasonal interactions; and 3) facultative, generalized interactions. We then review the limited available data in light of our a priori predictions and point to mutualisms that are more and less likely to be at risk of becoming phenologically mismatched, emphasizing the need for research on mutualisms other than plant–pollinator interactions. Future studies should explicitly focus on mutualism characteristics to determine whether and how changing phenologies will affect mutualistic interactions.  相似文献   

9.
Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio‐temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant–pollinator interactions with an unprecedented spatio‐temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species‐rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio‐temporal niche complementarity in flower visitation.  相似文献   

10.
Vigorous discussion of the degree of specialization in pollination interactions, combined with advances in the analysis of complex networks, has revitalized the study of entire plant–pollinator communities. Noticeably rare, however, are attempts to quantify temporal variation in the structure of plant–pollinator networks, and to determine whether the status of species as specialists or generalists is stable. Here we show that network structure varied through time in a montane meadow community from southern California, USA, in that pollinator species did not form the same links with plant species across years. Furthermore, composition of the generalized core group of species in the network varied among summers, as did the identity of those species involved in relationships that appeared to be reciprocally specialized within any one summer. These differences appear to be related to severe drought conditions experienced in the second summer of the 3 year study. In contrast to this variation, the pollinator community remained similarly highly nested in all three summers, even though species were packed into the nested matrix differently from year to year. These results suggest that plant–pollinator networks vary in detail through time, while retaining some basic topological properties. This dynamic aspect of community‐scale interactions has implications for both ecological and evolutionary inferences about pollination mutualisms.  相似文献   

11.
Species interactions are one dimension of a niche. Niche overlap arises when two species share an interaction partner. In pollination systems, environmental and biotic factors affect niche overlap. Here, we explored the effects of climate seasonality, plant and bat richness, morphological traits, and phylogenetic distance in shaping the niche overlap of Neotropical bat–plant pollination networks. We examined a dataset of 22 bat–plant pollination networks in the Neotropical region. We measured niche overlap in bats and plants with the Morisita-Horn index (ĈH) and used a SAR model to test the relationships between niche overlap and both abiotic and biotic factors. We found a lower niche overlap among bats in communities composed of phylogenetically distant bat species. Moreover, plant and bat overlap was lower in regions with higher precipitation seasonality. Our results indicate that climate seasonality and bat evolutionary history drive niche overlap in Neotropical bat–plant pollination interactions. These findings suggest that a higher precipitation seasonality promotes the emergence of temporal modules, which reduces niche overlap, likely due to seasonal species phenologies. Furthermore, the method used to record the interactions affects the degree of niche overlap. Interactions recorded with pollen samples tend to have higher niche overlap than direct observations. The responses of morphological traits and phylogenetic distances in bat niche overlap were uncoupled, suggesting an effect of historical processes independent of morphological traits. Our findings reinforce the importance of evolutionary history and ecological processes in imprinting patterns of interaction niche overlap.  相似文献   

12.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

13.
Climate change may disrupt plant–pollinator mutualisms by generating phenological asynchronies and by altering traits that shape interaction costs and benefits. Our knowledge is limited to studies that manipulate only one partner or focus on either phenological or trait-based mismatches. We assembled communities of three annual plants and a solitary bee prior to flowering and emergence to test how springtime warming affects phenologies, traits, interactions and reproductive output. Warming advanced community-level flowering onset, peak and end but did not alter bee emergence. Warmed plant communities produced fewer and smaller flowers with less, more-concentrated nectar, reducing attractiveness, and warmed bees were more generalized in their foraging, reducing their effectiveness. Plant–bee interactions were less frequent, shorter and peaked earlier under warming. As a result, warmed plants produced fewer, lighter seeds, indicating pollinator-mediated fitness costs. Climate change will perturb plant–pollinator mutualisms, causing wide-ranging effects on partner species and diminishing the ecosystem service they provide.  相似文献   

14.
1. Moths are globally relevant as pollinators but nocturnal pollination remains poorly understood. Plant–pollinator interaction networks are traditionally constructed using either flower‐visitor observations or pollen‐transport detection using microscopy. Recent studies have shown the potential of DNA metabarcoding for detecting and identifying pollen‐transport interactions. However, no study has directly compared the realised observations of pollen‐transport networks between DNA metabarcoding and conventional light microscopy. 2. Using matched samples of nocturnal moths, we constructed pollen‐transport networks using two methods: light microscopy and DNA metabarcoding. Focussing on the feeding mouthparts of moths, we developed and provide reproducible methods for merging DNA metabarcoding and ecological network analysis to better understand species interactions. 3. DNA metabarcoding detected pollen on more individual moths, and detected multiple pollen types on more individuals than microscopy, although the average number of pollen types per individual was unchanged. However, after aggregating individuals of each species, metabarcoding detected more interactions per moth species. Pollen‐transport network metrics differed between methods because of variation in the ability of each to detect multiple pollen types per moth and to separate morphologically similar or related pollen. We detected unexpected but plausible moth–plant interactions with metabarcoding, revealing new detail about nocturnal pollination systems. 4. The nocturnal pollination networks observed using metabarcoding and microscopy were similar yet distinct, with implications for network ecologists. Comparisons between networks constructed using metabarcoding and traditional methods should therefore be treated with caution. Nevertheless, the potential applications of metabarcoding for studying plant–pollinator interaction networks are encouraging, especially when investigating understudied pollinators such as moths.  相似文献   

15.
In the face of global pollinator decline, extensively managed grasslands play an important role in supporting stable pollinator communities. However, different types of extensive management may promote particular plant species and thus particular functional traits. As the functional traits of flowering plant species (e.g., flower size and shape) in a habitat help determine the identity and frequency of pollinator visitors, they can also influence the structures of plant−pollinator interaction networks (i.e., pollination networks). The aim of this study was to examine how the type of low‐intensity traditional management influences plant and pollinator composition, the structure of plant−pollinator interactions, and their mediation by floral and insect functional traits. Specifically, we compared mown wooded meadows to grazed alvar pastures in western Estonia. We found that both management types fostered equal diversity of plants and pollinators, and overlapping, though still distinct, plant and pollinator compositions. Wooded meadow pollination networks had significantly higher connectance and specialization, while alvar pasture networks achieved higher interaction diversity at a standardized sampling of interactions. Pollinators with small body sizes and short proboscis lengths were more specialized in their preference for particular plant species and the specialization of individual pollinators was higher in alvar pastures than in wooded meadows. All in all, the two management types promoted diverse plant and pollinator communities, which enabled the development of equally even and nested pollination networks. The same generalist plant and pollinator species were important for the pollination networks of both wooded meadows and alvar pastures; however, they were complemented by management‐specific species, which accounted for differences in network structure. Therefore, the implementation of both management types in the same landscape helps to maintain high species and interaction diversity.  相似文献   

16.
A striking structural pattern of pollination networks is the presence of a few highly connected species which has implications for ecological and evolutionary processes that create and maintain diversity. To understand the structure and dynamics of pollination networks we need to know which mechanisms allow the emergence of highly connected species. We investigate whether social pollinator species are highly connected in pollination networks, and whether network structure is affected by the presence of high proportions of social pollinator species. Social insects are abundant, with long activity periods and, at the highest level of social organisation, specialised foraging castes. These three attributes are likely to increase the number of interactions of social species and, consequently, their role in pollination networks. We find that social species have, on average, more prominent network roles than solitary species, a possible mechanism being the individual‐rich colonies of social insects. However, when accounting for the shared evolutionary history of pollinators, sociality is only associated with highly interactive roles in Apidae. For apid bees, our structural equation analysis shows that the effect of sociality on species network roles is an indirect result of their high levels of interaction frequency. Despite the relative importance of sociality at a species‐level, an increasing proportion of social species in pollination networks did not affect overall network structure. Our results suggest that behavioural traits may shape patterns of interaction of individual species but not the network‐level organisation of species interactions. Instead, network structure appears to be determined by more general aspects of ecological systems such as interaction intimacy, patterns of niche overlap, and species abundance distributions.  相似文献   

17.
Pollinator activity and competition for pollinators lead to quantitative and qualitative pollen limitations on seed production and affect the reproductive success of plant species, depending on their breeding system (e.g., self‐compatibility and heterospecific compatibility) and genetic load (e.g., inbreeding depression and hybrid inviability). In alpine ecosystems, snowmelt regimes determine the distribution and phenology of plant communities. Plant species growing widely along a snowmelt gradient often grow with different species among local populations. Their pollinators also vary in their abundance, activity, and behavior during the season. These variations may modify plant–pollinator and plant–plant interactions. We integrated a series of our studies on the alpine dwarf shrub, Phyllodoce aleutica (Ericaceae), to elucidate the full set of intrinsic (species‐specific breeding system) and extrinsic factors (snow condition, pollinator activity, and interspecific competition) acting on their reproductive process. Seasonality of pollinator activity led to quantitative pollen limitation in the early‐blooming populations, whereas in the late‐blooming populations, high pollinator activity ensured pollination service, but interspecific competition for pollinators led to qualitative and quantitative pollen limitation in less competitive species. However, negative effects of illegitimate pollen receipt on seed‐set success might be reduced when cryptic incompatibility systems (i.e., outcross pollen grains took priority over self‐ and heterospecific pollen grains) could effectively prevent ovule and seed discounting. Our studies highlight the importance of species‐specific responses of plant reproduction to changing pollinator availability along environmental gradients to understand the general features of pollination networks in alpine ecosystems.  相似文献   

18.
The analysis of ecological networks is generally bottom‐up, where networks are established by observing interactions between individuals. Emergent network properties have been indicated to reflect the dominant mode of interactions in communities that might be mutualistic (e.g., pollination) or antagonistic (e.g., host–parasitoid communities). Many ecological communities, however, comprise species interactions that are difficult to observe directly. Here, we propose that a comparison of the emergent properties from detail‐rich reference communities with known modes of interaction can inform our understanding of detail‐sparse focal communities. With this top‐down approach, we consider patterns of coexistence between termite species that live as guests in mounds built by other host termite species as a case in point. Termite societies are extremely sensitive to perturbations, which precludes determining the nature of their interactions through direct observations. We perform a literature review to construct two networks representing termite mound cohabitation in a Brazilian savanna and in the tropical forest of Cameroon. We contrast the properties of these cohabitation networks with a total of 197 geographically diverse mutualistic plant–pollinator and antagonistic host–parasitoid networks. We analyze network properties for the networks, perform a principal components analysis (PCA), and compute the Mahalanobis distance of the termite networks to the cloud of mutualistic and antagonistic networks to assess the extent to which the termite networks overlap with the properties of the reference networks. Both termite networks overlap more closely with the mutualistic plant–pollinator communities than the antagonistic host–parasitoid communities, although the Brazilian community overlap with mutualistic communities is stronger. The analysis raises the hypothesis that termite–termite cohabitation networks may be overall mutualistic. More broadly, this work provides support for the argument that cryptic communities may be analyzed via comparison to well‐characterized communities.  相似文献   

19.
When co‐occurring plant species overlap in flowering phenology they may compete for the service of shared pollinators. Competition for pollination may lower plant reproductive success by reducing the number of pollinator probes or by decreasing the quality of pollen transport to or from a focal species. Pair‐wise interactions between plants sharing pollinators have been well documented. However, relatively few studies have examined interactions for pollination among three or more plant species, and little is known about how the outcomes and mechanisms of competition for pollination may vary with competitor species composition. To better understand how the dynamics of competition for pollination may be influenced by changes in the number of competitors, we manipulated the presence of two competitors, Lythrum salicaria and Lobelia siphilitica, and quantified reproductive success for a third species, Mimulus ringens. Patterns of pollinator preference and interspecific transitions in mixed‐species arrays were significantly influenced by the species composition of competitor plants present. Both pair‐wise and three‐species competition treatments led to a similar ~ 40% reduction in Mimulus ringens seed set. However, the patterns of pollinator foraging we observed suggest that the relative importance of different mechanisms of competition for pollination may vary with the identity and number of competitors present. This variation in mechanisms of competition for pollination may be especially important in diverse plant communities where many species interact through shared pollinators.  相似文献   

20.
Both differences in local plant density and phenotypic traits may affect pollination and plant reproduction, but little is known about how density affects trait–fitness relationships via changes in pollinator activity. In this study we examined how plant density and traits interact to determine pollinator behaviour and female reproductive success in the self‐incompatible, perennial herb Phyteuma spicatum. Specifically, we hypothesised that limited pollination service in more isolated plants would lead to increased selection for traits that attract pollinators. We conducted pollinator observations and assessed trait–fitness relationships in a natural population, whose individuals were surrounded by a variable number of inflorescences. Both local plant density and plant phenotypic traits affected pollinator foraging behaviour. At low densities, pollinator visitation rates were low, but increased with increasing inflorescence size, while this relationship disappeared at high densities, where visitation rates were higher. Plant fitness, in terms of seed production per plant and per capsule, was related to both floral display size and flowering time. Seed production increased with increasing inflorescence size and was highest at peak flowering. However, trait–fitness relationships were not density‐dependent, and differences in seed production did not appear to be related to differences in pollination. The reasons for this remain unclear, and additional studies are needed to fully understand and explain the observed patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号