首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The serpulid annelid Ficopomatus enigmaticus is a widely distributed invader of shallow‐water, brackish habitats in subtropical and temperate regions, where it has numerous damaging ecological and economic effects. Its distributional pattern suggests that temperature and salinity play important roles in limiting its distribution, but because other factors often covary with these, drawing strong conclusions from these patterns is difficult. In an effort to more clearly identify the effects of these factors, we examined tolerance to acute thermal (16–28°C) and salinity (0–35 psu) stress by larvae (5‐day exposure, unfed) and adults (14‐day exposure, unfed) of F. enigmaticus in the laboratory experiments. Larvae showed higher mortality at the highest temperature tested 28°C; adult survival was unaffected by temperature. Neither larvae nor adults survived exposure to pure freshwater (0 psu), but survived well at salinities ranging 3.5–35 psu. In addition, high salinity did not slow tube growth in adults. These results suggest that salinity stress, in particular, does not directly limit the distribution of F. enigmaticus to low‐salinity habitats. Experimental work on the distribution of F. enigmaticus is uncommon in the literature, but is likely needed to identify the abiotic or biotic factors that limit the distribution of this frequently invasive species.  相似文献   

2.
3.
‘Trochophore’ is a term used in a strict sense for larvae having an opposed-band method of feeding, involving a prototroch and metatroch. Other ciliary bands such as a telotroch and neurotroch may be present. The trochophore has been proposed to represent the ancestral larval form for a group of metazoan phyla (including all members of the Spiralia). The name trochophore is also often applied to larvae that do not conform to the above definition. A cladistic analysis of spiralian taxa (with special reference to polychaete annelids), based on a suite of adult and larval characters, is used to assess several hypotheses: (1) that the trochophore (in a strict sense) is a plesiomorphic form for the Spiralia; (2) that die stricdy defined trochophore is plesiomorphic for members of the Spiralia such as the Polychaeta. The homology of each of the various separate ciliary bands of spiralian larvae, and features such as the apical tuft and protonephridia is also assessed. The results favour the conclusion that the trochophore, if defined as a feeding larval form using opposed bands, should not be regarded as an ancestral (= plesiomorphic) type for the Spiralia, or any other large taxon such as the Polychaeta or Mollusca. The evidence suggests that the various ciliary bands have differing evolutionary histories, and only the Echiura (possibly an annelid group) has members with the classical trochophore. The trochophore is re-defined as a larval form with a prototroch. This broad definition covers a wide variety of larvae, and matches the current usage more accurately than the restricted term. Features such as the neurotroch, telotroch and opposed-band feeding show convergence and reversals. The nature of the metatroch requires further investigation. The presence of a prototroch (and hence trochophore larvae) is used to identify an apomorphy-based taxon, Trochozoa, that includes the first ancestor to have evolved a prototroch and all its descendants. This minimally includes the Annelida [sensu lato), Echiura, Entoprocta, Mollusca and Sipuncula and is a less inclusive taxon than the Spiralia.  相似文献   

4.
The larvae of marine annelids capture food using an unusual diversity of suspension-feeding mechanisms. Many of the feeding mechanisms of larval annelids are poorly known despite the abundance and ecological significance of both larvae and adults of some annelid taxa. Here we show that larvae of two species of sabellariid annelids, Sabellaria cementarium and Phragmatopoma californica, bear prototrochal and metatrochal cilia that beat in opposition to each other. For larvae of S. cementarium, we provide evidence that these opposed bands of cilia are used to capture suspended particles. In video recordings, captured particles were overtaken by a prototrochal cilium and then moved with the cilium to the food groove, a band of cilia between the prototroch and metatroch. They were then transported by cilia of the food groove to the mouth. Lengths of the prototrochal cilia, lengths of the prototrochal ciliary band, size range of the particles captured, and estimated rates of clearance increased with larval age and body size. Confirmation of the presence of opposed bands in larvae of sabellariids extends their known occurrence in the annelids to members of 10 families. Opposed bands in these different taxa differ in the arrangements and spacing of prototrochal and metatrochal cilia, and in whether they are used in combination with other feeding mechanisms. Opposed bands appear to be particularly widespread among the larvae of sabellidan annelids (a clade that includes sabellariids, sabellids, and serpulids), even in some species whose larvae do not feed. A parsimony analysis suggests that opposed bands are ancestral in this clade of annelids.  相似文献   

5.
Embryos and larvae of an isocrinid sea lily, Metacrinus rotundus, are described by scanning electron microscopy. Around hatching (35 h after fertilization), the outer surface of the gastrula becomes ubiquitously covered with short cilia. At 40 h, the hatched swimming embryo develops a cilia‐free zone of ectoderm on the ventral side. By 3 days, the very early dipleurula larva develops a cilia‐free zone ventrally, densely ciliated regions laterally, and a sparsely ciliated region dorsally. At this stage, the posterior and anterior ciliary bands first appear: the former runs along a low ridge separating the densely from the sparsely ciliated epidermal regions, while the latter is visible, at first discontinuously, along the boundary between the densely ciliated lateral regions and the cilia‐free ventral zone. In the late dipleurula larva (5 days after fertilization), the anterior and posterior loops of ciliary bands are well defined. The transition from the dipleurula to the semidoliolaria larva occurs at 6 days as the posterior loop becomes rearranged to form incompletely circumferential ciliary bands. The larva becomes competent to settle at this stage. The arrangement of the ciliary bands on the semidoliolaria is maintained during the second week of development, while the larva retains its competence to settle. The larval ciliary patterns described here are compared with those of stalkless crinoids and eleutherozoan echinoderms. The closest morphological similarities are between M. rotundus and the basal eleutherozoan class Asteroidea.  相似文献   

6.
Experimental manipulations of the energy content of marine invertebrate embryos have been useful in testing key assumptions of life history theory, especially those concerning relationships between egg size, length of the planktonic period, and juvenile size and quality. However, methods for such “allometric engineering” experiments have been available for only a limited set of taxa (those with regulative early development, e.g., cnidarians and echinoderms). Here, we describe a method for the reduction of embryo energy content in the spirally cleaving embryos of a marine annelid, Capitella teleta, by targeted deletion of endodermal precursor cells. Embryos of C. teleta in which up to three cells (the macromeres 3A, 3B, and 3C) were deleted formed morphologically normal lecithotrophic larvae that were much smaller than larvae developing from control embryos. Experimental larvae metamorphosed at high rates, forming juveniles that were smaller than control juveniles. Juveniles derived from treated embryos had functional midguts, ingested and digested food, and grew into sexually mature adults. These results are consistent with those from previous allometric engineering studies of echinoid echinoderms, which suggest that in facultatively planktotrophic or lecithotrophic species, little maternally derived energy is used for construction of the larval body; instead, the majority is allocated to the formation of a large, high‐quality juvenile. Cleavage programs are highly conserved among divergent spiralian taxa (e.g., molluscs, nemerteans, and platyhelminths), so this method will likely be applicable to a diverse set of embryos. Similar experiments carried out in these diverse taxa will be extremely useful for evaluating inferences on relationships between egg size, length of the planktonic period, and juvenile size and quality previously based only on experiments on echinoid echinoderms.  相似文献   

7.
In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non‐cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome‐based, functionally distinct structures that require the action of microtubule‐mediated, motor‐driven transport for their assembly. Cilia proteins have been found at non‐cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia‐independent functions of cilia proteins and re‐evaluate their potential contributions to “cilia” disorders.  相似文献   

8.
In just a few years, the Asian fly Drosophila suzukii has invaded several continents and has become a very serious pest of many fruit crops worldwide. Current control methods rely on chemical insecticides or expensive and labour‐intensive cultural practices. Classical biological control through the introduction of Asian parasitoids that have co‐evolved with the pest may provide a sustainable solution on condition that they are sufficiently specific to avoid non‐target effects on local biodiversity. Here, we present the first study on the development of three larval parasitoids from China and Japan, the Braconidae Asobara japonica and the Figitidae Leptopilina japonica and Ganaspis sp., on D. suzukii. The Asian parasitoids were compared with Leptopilina heterotoma, a common parasitoid of several Drosophilidae worldwide. The three Asian species were successfully reared on D. suzukii larvae in both, blueberry and artificial diet, in contrast to L. heterotoma whose eggs and larvae were encapsulated by the host larvae. All parasitoids were able to oviposit one day after emergence. Asobara japonica laid as many eggs in larvae feeding in blueberry as in artificial diet, whereas L. heterotoma oviposited more in larvae on the artificial diet and the Asian Figitidae oviposited more in larvae feeding on blueberry. Ganaspis sp. laid very few eggs in larvae in the artificial diet, suggesting that it may be specialized in Drosophila species living in fresh fruits. These data will be used for the development of a host range testing to assess the suitability of Asian parasitoids as biological control agents in invaded regions.  相似文献   

9.
10.
Due to the ephemeral nature of carcasses they grow on, necrophagous blowfly larvae should minimize the time spent on the cadaver. This could be achieved by moving to high‐temperature areas. On that basis, we theorized that larvae placed in a heterogeneous thermal environment would move to the higher temperature that speed up their development. This study was designed to (1) test the ability of necrophagous larvae to orientate in a heterogeneous thermal environment, and (2) compare the temperatures selected by the larvae of three common blowfly species: Lucilia sericata (Meigen), Calliphora vomitoria (L.) and Calliphora vicina (Robineau‐Desvoidy). For this purpose, we designed a setup we named Thermograde. It consists of a food‐supplied linear thermal gradient that allows larvae to move, feed, and grow in close‐to‐real conditions, and to choose to stay at a given temperature. For each species and replication, 80 young third instars were placed on the thermal gradient. The location of larvae was observed after 19 h, with fifteen replications per species. The larvae of each species formed aggregations that were always located at the same temperatures, which were highly species‐specific: 33.3 ± 1.52 °C for L. sericata, 29.6 ± 1.63 °C for C. vomitoria, and 22.4 ± 1.55 °C for C. vicina. According to the literature, these value allows a fast development of the larvae, but not to reach the maximum development rate. As control experiments clearly demonstrate that larval distribution was not due to differences in food quality, we hypothesized that the local temperature selection by larvae may result from a trade‐off between development quality and duration. Indeed, temperature controls not only the development rate of the larvae, but also the quality of their growth and survival rate. Finally, results raise questions regarding the way larvae moved on the gradient and located their preferential temperature.  相似文献   

11.
Mortality of western corn rootworm (Diabrotica virgifera virgifera LeConte) due to feeding on MON863 transgenic maize (Zea mays L.) expressing the Cry3Bb1 protein was evaluated at three Missouri sites in both 2003 and 2004 and at one site each in South Dakota, Nebraska and Iowa in 2004. To do this, survivorship relative to survivorship on isoline maize (i.e. the same genetic background, but without Cry3Bb1) was evaluated. Comparisons were made using low (1650–2500 eggs/m) and high (3300–3500 eggs/m) western corn rootworm egg densities. Significantly fewer beetles were recovered from MON863 than from isoline maize. Emergence from MON863 as a percentage of viable eggs ranged from 0.02% to 0.10%, whereas percentage emergence from isoline maize ranged from 1.09% to 7.14%. Survivorship on MON863 relative to survivorship on isoline averaged 1.51% when averaged across all environments and both years, so mortality because of the Cry3Bb1 protein averaged 98.49%. The average time delay to 50% cumulative beetle emergence from MON863 was 18.3 days later than from isoline maize. Females comprised 56% and 71% of total beetles recovered from MON863 in 2003 and 2004, respectively. Results are discussed in relation to insect resistance management (IRM) of western corn rootworm.  相似文献   

12.
Freshwater mussels of the order Unionoida have life cycles that include larval attachment to and later metamorphosis on suitable host fishes. Information on the trophic relationship between unionoid larvae and their host fishes is scarce. We investigated the trophic interaction between fish hosts and encysted larvae of two species of freshwater mussels, Margaritifera margaritifera and Unio crassus, using stable isotope analyses of larvae and juvenile mussels as well as of host fish gill and muscle tissues before and after infestation. Due to different life histories and durations of host‐encystment, mass and size increase in M. margaritifera during the host‐dependent phase were greater than those of U. crassus. δ13C and δ15N signatures of juvenile mussels approached isotopic signatures of fish tissues, indicating a parasitic relationship between mussels and their hosts. Shifts were more pronounced for M. margaritifera, which had a five‐fold longer host‐dependent phase than U. crassus. The results of this study suggest that stable isotope analyses are a valuable tool for characterizing trophic relationships and life history strategies in host–parasite systems. In the case of unionoid mussels, stable isotopic shifts of the larvae are indicative of the nutritional versus phoretic importance of the host.  相似文献   

13.
14.
Transmission plays an integral part in the intimate relationship between a host insect and its pathogen that can be altered by abiotic or biotic factors. The latter include other pathogens, parasitoids, or predators. Ants are important species in food webs that act on various levels in a community structure. Their social behavior allows them to prey on and transport larger prey, or they can dismember the prey where it was found. Thereby they can also influence the horizontal transmission of a pathogen in its host's population. We tested the hypothesis that an ant species like Formica fusca L. (Hymenoptera: Formicidae) can affect the horizontal transmission of two microsporidian pathogens, Nosema lymantriae Weiser (Microsporidia: Nosematidae) and Vairimorpha disparis (Timofejeva) (Microsporidia: Burenellidae), infecting the gypsy moth, Lymantria dispar L. (Lepidoptera: Erebidae: Lymantriinae). Observational studies showed that uninfected and infected L. dispar larvae are potential prey items for F. fusca. Laboratory choice experiments led to the conclusion that F. fusca did not prefer L. dispar larvae infected with N. lymantriae and avoided L. dispar larvae infected with V. disparis over uninfected larvae when given the choice. Experiments carried out on small potted oak, Quercus petraea (Mattuschka) Liebl. (Fagaceae), saplings showed that predation of F. fusca on infected larvae did not significantly change the transmission of either microsporidian species to L. dispar test larvae. Microscopic examination indicated that F. fusca workers never became infected with N. lymantriae or V. disparis after feeding on infected prey.  相似文献   

15.
Tube structure, ultrastructure and mineralogy support serpulid affinities of the problematic worm fossil ‘Serpulaetalensis from the Lower Jurassic of Germany. The original tube mineralogy of ‘Serpulaetalensis is purely aragonitic and is preserved in Upper Pliensbachian specimens from eastern Germany. ‘Serpulaetalensis represent the earliest record of aragonitic mineralogy for serpulids. The tube is formed of irregularly oriented prismatic crystals that are 3–6 µm in length and 0.5–1.0 µm in diameter. Calcitic specimens of ‘Serpulaetalensis from Upper Sinemurian of southwestern Germany were recrystallized during the diagenesis and lack the original tube ultrastructure.  相似文献   

16.
The coelomic fluid of the polychaete Glycera dibranchiata contained a naturally occurring antibacterial factor, probably serving as part of the organism's defense against bacterial infection. This factor was active against several Gram-negative bacteria, including Serratia marcescens, Pseudomonas aeruginosa, and certain Escherichia coli strains. Quantitative methods to measure this activity were developed. This permitted study of some of its fundamental properties such as dose response, kinetics, and temperature sensitivity. Preliminary data suggested that the antibacterial factor was a heat-labile protein, unrelated to lysozyme. This factor differed from previously described bacteriolytic substances of invertebrate origin and may represent a new type of antimicrobial protein.  相似文献   

17.
18.
Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F‐ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva‐to‐adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.  相似文献   

19.
Eucryptorrhynchus scrobiculatus (Olivier) and E. brandti (Harold) are two wood boring pests of Ailanthus altissima (Mill.) Swingle (tree of heaven) and the variety Ailanthus altissima var. Qiantouchun. These beetles attack healthy trees and bore into roots and trunks during the larval stage. We studied the typology, distribution and morphostructure of the sensilla on the antennae, maxillary palps and labial palps of E. scrobiculatus and E. brandti larvae using scanning and transmission electron microscopy. The results showed the following: (i) the antennae of the two weevil larvae had two types of sensilla, sensilla basiconica (S.b.1 and S.b.2) and sensilla twig basiconica (S.tb.1‐S.tb.3), with S.tb.4 observed only on the antennae of E. brandti larvae; (ii) the maxillary palps had three types of sensilla, S.b.2, S.tb. (S.tb.2, S.tb.3 and S.tb.5) and digitiform sensilla; (iii) the labial palps had two types of sensilla, S.b.2 and S.tb. (S.tb.2, S.tb.3 and S.tb.5); (iv) the quantity and distribution of sensilla on the antennae, maxillary palps and labial palps remained constant between E. scrobiculatus and E. brandti larvae; and (v) sensilla basiconica had distinct sidewall pores, an apical pore was observed on sensilla twig basiconica, and digitiform sensilla were oval in shape, with a distinct apical pore. Based on the microstructure of the cuticle wall and dendrite, we hypothesized that these sensilla functioned as olfactory, gustatory and hygro‐/thermo‐receptors, respectively. We discuss the relationships among types of sensilla and the types of damage caused by the larvae inside the host tree to understand olfactory and gustatory receptor mechanisms. The results of this study will provide a firm basis for future electrophysiological studies.  相似文献   

20.
There is no conclusive evidence that Helicoverpa spp. (Lepidoptera: Noctuidae) in Australia have evolved significant levels of resistance to Bollgard II® cotton (which expresses two Bt toxin genes, cry1Ac and cry2Ab). However, there is evidence of surviving larvae on Bollgard II cotton in the field. The distribution and survival of early‐instar Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae were examined on whole Bollgard II and non‐Bt cotton plants in greenhouse bioassays. The expression of Cry toxins in various parts of Bollgard II plants was compared to the survival of larvae in those locations. Only 1% of larvae survived after 6 days on greenhouse‐grown Bollgard II plants compared to 31% on non‐Bt cotton plants. Overall, and across all time intervals, more larvae survived on reproductive parts (squares, flowers, and bolls) than on vegetative parts (leaves, stems, and petioles) on Bollgard II plants. The concentration of Cry1Ac toxin did not differ between plant structures, whereas Cry2Ab toxin differed significantly, but there was no relationship between the level of expression and the location of larvae. This study provides no evidence that lower expression of Cry toxins in the reproductive parts of plants explains the survival of H. armigera larvae on Bollgard II cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号