首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains instead obscure how sequestration is established, and how the earliest sexual stages, morphologically similar to asexual trophozoites, modify the infected erythrocytes and their cytoadhesive properties at the onset of gametocytogenesis. Here, purified P. falciparum early gametocytes were used to ultrastructurally and biochemically analyse parasite‐induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do not modify its surface with adhesive ‘knob’ structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50–60 variants of PfEMP1, is dramatically downregulated in the transition from asexual development to gametocytogenesis. Cytoadhesion assays show that such gene expression changes and host cell surface modifications functionally result in the inability of stage I gametocytes to bind the host ligands used by the asexual parasite to bind endothelial cells. In conclusion, these results identify specific differences in molecular and cellular mechanisms of host cell remodelling and in adhesive properties, leading to clearly distinct host parasite interplays in the establishment of sequestration of stage I gametocytes and of asexual trophozoites.  相似文献   

2.
ABSTRACT: BACKGROUND: Malaria parasites undergo, in the vertebrate host, a developmental switch from asexual replication to sexual differentiation leading to the formation of gametocytes, the only form able to survive in the mosquito vector. Regulation of the onset of the sexual phase remains largely unknown and represents an important gap in the understanding of the parasite's complex biology. METHODS: The expression and function of the Nima-related kinase Pfnek-4 during the early sexual development of the human malaria parasite Plasmodium falciparum were investigated, using three types of transgenic Plasmodium falciparum 3D7 lines: (i) episomally expressing a Pfnek-4-GFP fusion protein under the control of its cognate pfnek-4 promoter; (ii) episomally expressing negative or positive selectable markers, yeast cytosine deaminase-uridyl phosphoribosyl transferase, or human dihydrofolate reductase, under the control of the pfnek-4 promoter; and (iii) lacking a functional pfnek-4 gene. Parasite transfectants were analysed by fluorescence microscopy and flow cytometry. In vitro growth rate and gametocyte formation were determined by Giemsa-stained blood smears. RESULTS: The Pfnek-4-GFP protein was found to be expressed in stage II to V gametocytes and, unexpectedly, in a subset of asexual-stage parasites undergoing schizogony. Culture conditions stimulating gametocyte formation resulted in significant increase of this schizont subpopulation. Moreover, sorted asexual parasites expressing the Pfnek-4-GFP protein displayed elevated gametocyte formation when returned to in vitro culture in presence of fresh red blood cells, when compared to GFP- parasites from the same initial population. Negative selection of asexual parasites expressing pfnek-4 showed a marginal reduction in growth rate, whereas positive selection caused a marked reduction in parasitaemia, but was not sufficient to completely abolish proliferation. Pfnek-4- clones are not affected in their asexual growth and produced normal numbers of stage V gametocytes. CONCLUSIONS: The results indicate that Pfnek-4 is not strictly gametocyte-specific, and is expressed in a small subset of asexual parasites displaying high rate conversion to sexual development. Pfnek-4 is not required for erythrocytic schizogony and gametocytogenesis. This is the first study to report the use of a molecular marker for the sorting of sexually-committed schizont stage P. falciparum parasites, which opens the way to molecular characterization of this pre-differentiated subpopulation.  相似文献   

3.
4.
Crooks L 《Parasitology》2008,135(8):881-896
Most mathematical models of malaria infection represent parasites as replicating continuously at a constant rate whereas in reality, malaria parasites replicate at a fixed age. The behaviour of continuous-time models when gametocytogenesis is included, in comparison to a more realistic discrete-time model that incorporates a fixed replication age was evaluated. Both the infection dynamics under gametocytogenesis and implications for predicting the amount parasites should invest into gametocytes (level of investment favoured by natural selection) are considered. It is shown that the many malaria models with constant replication rates can be represented by just 3 basic types. For these 3 types, it is then shown that under gametocytogenesis (i) in 2 cases, parasite multiplication and gametocyte production is mostly much too low, (ii) in the third, parasite multiplication and gametocyte production is mostly much too high, (iii) the effect of gametocyte investment on parasite multiplication is mostly too high, (iv) the effect of gametocyte investment on gametocyte production is nearly always too low and (v) with a simple approximation of fitness, the predicted level of gametocyte investment is mostly much too low. However, a continuous model with 48 age-compartments compares well to the discrete model. These findings are a further argument for modelling malaria infections in discrete time.  相似文献   

5.
The proportion of asexual blood-stage malaria parasites that develop into transmission stages (gametocytes) can increase in response to stress. We investigated whether stress imposed by a variety of antimalarial drugs administered before or during infection increased gametocyte production (gametocytogenesis) in vivo in the rodent malaria parasite, Plasmodium chabaudi. All methods of drug treatment greatly reduced the numbers of asexual parasites produced during an infection but resulted in either no reduction in numbers of gametocytes or a smaller reduction than that experienced by asexuals. We used a simple model to estimate temporal variation in gametocyte production. Temporal patterns of gametocytogenesis did not greatly differ between untreated and prophylaxis infections, with rates of gametocytogenesis always increasing as the infection progressed. In contrast, administration of drugs 5 days after infection stimulated increased rates of gametocytogenesis early in the infection, resulting in earlier peak gametocyte densities relative to untreated infections. Given the correlation between gametocyte densities and infectivity to mosquito vectors, and the high frequency of subcurative drug therapy and prophylaxis in human populations, these data suggest that antimalarial drugs may frequently have only a small effect on reducing malaria transmission and may help to explain the rapid spread of drug-resistant geno-types.  相似文献   

6.
7.
8.
9.
A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte‐infected host cell periphery. Co‐immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock‐out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage‐specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.  相似文献   

10.
Gametocytogenesis of the malaria parasite Plasmodium falciparum was studied in monolayers of erythrocytes attached to tissue culture dishes. Merozoites produced by single schizonts in erythrocytes overlaying the monolayer infected the attached erythrocytes and produced clusters of progeny. Parasites in these readily indentifiable clusters then underwent either asexual growth or sexual differentiation. The progeny of most schizonts yielded no gametocytes. However, the progeny of those schizonts that did yield gametocytes showed a marked tendency to produce multiple gametocytes. Gametocytogenesis, therefore, was not random. Instead, the progeny of certain schizonts were committed to produce gametes. However, even those clusters containing several gametocytes also contained asexual forms. Therefore, not all merozoites of a single schizont were committed to gametocytogenesis. In those cells infected with two or more merozoites the formation of a gametocyte was usually associated with a block in the further development of other parasites.  相似文献   

11.
Experiments were carried out to determine the effect of partial host immunity against the rodent malaria parasite Plasmodium chabaudi on the transmission success of the parasite. There was a fourfold reduction in both the blood-stage, asexually replicating parasite density and the gametocyte (transmissable stage) density in immunized hosts. Some of the reduction in asexual parasite densities was due to strain-specific immunity, but there was no evidence that strain-specific immunity affected gametocyte densities. However, immunity did affect transmission in a strain-specific manner, with a fivefold reduction in gametocyte infectivity to mosquitoes in homologous challenges compared with heterologous challenges or non-immunized controls. This implies the existence of a mechanism of strain-specific infectivity-reducing immunity that does not affect the density of gametocytes circulating in peripheral blood. The proportion of asexual parasites that produced gametocytes increased during the course of infection in both non-immunized and in immunized hosts, but immunity increased gametocyte production early in the infection.  相似文献   

12.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

13.
The transmission of malaria parasites to the mosquito depends critically on the rapid initiation of sexual reproduction in response to triggers from the mosquito midgut environment. We here identify an essential function for an atypical mitogen-activated protein kinase of the rodent malaria parasite Plasmodium berghei, Pbmap-2, in male sexual differentiation and parasite transmission to the mosquito. A deletion mutant no longer expressing the Pbmap-2 protein develops as wild type throughout the asexual erythrocytic phase of the life cycle. Gametocytes, the sexual transmission stages, form normally and respond in vitro to the appropriate environmental cues by rounding up and emerging from their host cells. However, microgametocytes fail to release flagellated microgametes. Female development is not affected, as judged by the ability of macrogametes to become cross-fertilized by microgametes from a donor strain. Cellular differentiation of Pbmap-2 KO microgametocytes is blocked at a late stage of male gamete formation, after replication and mitoses have been completed and axonemes have been assembled. These data demonstrate a function for Pbmap-2 in initiating cytokinesis and axoneme motility, possibly downstream of a cell cycle checkpoint for the completion of replication and/or mitosis, which are extraordinarily rapid in the male gametocyte.  相似文献   

14.
Malaria pathology is caused by multiplication of asexual parasites within erythrocytes, whereas mosquito transmission of malaria is mediated by sexual precursor cells (gametocytes). Microarray analysis identified glycerol kinase (GK) as the second most highly upregulated gene in Plasmodium falciparum gametocytes with no expression detectable in asexual blood stage parasites. Phosphorylation of glycerol by GK is the rate-limiting step in glycerol utilization. Deletion of this gene from P. falciparum had no effect on asexual parasite growth, but surprisingly also had no effect on gametocyte development or exflagellation, suggesting that these life cycle stages do not utilize host-derived glycerol as a carbon source. Kinetic studies of purified PfGK showed that the enzyme is not regulated by fructose 1,6 bisphosphate. The high-resolution crystal structure of P. falciparum GK, the first of a eukaryotic GK, reveals two domains embracing a capacious ligand-binding groove. In the complexes of PfGK with glycerol and ADP, we observed closed and open forms of the active site respectively. The 27° domain opening is larger than in orthologous systems and exposes an extensive surface with potential for exploitation in selective inhibitor design should the enzyme prove to be essential in vivo either in the human or in the mosquito.  相似文献   

15.
Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti‐PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission‐blocking vaccine target candidate.  相似文献   

16.
The protozoan parasite Plasmodium falciparum, responsible for the most severe form of malaria, is able to sequester from peripheral circulation during infection. The asexual stage parasites sequester by binding to endothelial cell receptors in the microvasculature of various organs. P. falciparum gametocytes, the developmental stages responsible for parasite transmission from humans to Anopheles mosquitoes, also spend the almost ten days necessary for their maturation sequestered away from the peripheral circulation before they are released in blood mainstream. In contrast to those of asexual parasites, the mechanisms and cellular interactions responsible for immature gametocyte sequestration are largely unexplored, and controversial evidence has been produced so far on this matter. Here we present a systematic comparison of cell binding properties of asexual stages and immature and mature gametocytes from the reference P. falciparum clone 3D7 and from a patient parasite isolate on a panel of human endothelial cells from different tissues. This analysis includes assays on human bone marrow derived endothelial cell lines (HBMEC), as this tissue has been proposed as a major site of gametocyte maturation. Our results clearly demonstrate that cell adhesion of asexual stage parasites is consistently more efficient than that, virtually undetectable of immature gametocytes, irrespectively of the endothelial cell lines used and of parasite genotypes. Importantly, immature gametocytes of both lines tested here do not show a higher binding efficiency compared to asexual stages on bone marrow derived endothelial cells, unlike previously reported in the only study on this issue. This indicates that gametocyte-host interactions in this tissue are unlikely to be mediated by the same adhesion processes to specific endothelial receptors as seen with asexual forms.  相似文献   

17.
The sexual phase of the malaria parasite Plasmodium falciparum is essential for transmission of the disease and is accompanied by the co-ordinated expression of sexual stage proteins. Six of these proteins belong to a highly conserved apicomplexan family of multi-domain adhesion proteins, termed PfCCps. PfCCp1, PfCCp2 and PfCCp3 are co-dependently expressed in the parasitophorous vacuole associated with the gametocyte plasma membrane. PfCCp2 and PfCCp3 also play an essential role for parasite development in the mosquito. We show that the six PfCCp proteins are expressed in stages II-V of gametocytogenesis as well as during early gamete formation. The proteins are expressed in association with the surface of both male and female gametocytes and macrogametes, but are not present in exflagellating microgametes. Further, the newly described protein PfCCp4 co-localizes with the transmission blocking candidate Pfs230, with which it forms a protein complex. In contrast to the phenotypes that are observed following targeted gene disruption of PfCCp2, PfCCp3 or Pfs230, the lack of PfCCp4 expression does not inhibit parasite development in the mosquito vector. This indicates a non-essential role for this protein during parasite transmission. Exflagellation assays revealed that antibodies directed against distinct domains of PfCCp1 through PfCCp4 and PfFNPA support a complement-mediated decrease in gametocyte emergence. We conclude that the six PfCCp proteins are specifically expressed during gametocytogenesis and gamete formation, and that select members may represent prospective candidates for transmission blocking vaccines.  相似文献   

18.
19.
The kinome of the human malaria parasite Plasmodium falciparum includes two genes encoding mitogen-activated protein kinase (MAPK) homologues, pfmap-1 and pfmap-2, but no clear orthologue of the MAPK kinase (MAPKK) family, raising the question of the mode of activation and function of the plasmodial MAPKs. Functional studies in the rodent malaria model Plasmodium berghei recently showed the map-2 gene to be dispensable for asexual growth and gametocytogenesis, but essential for male gametogenesis in the mosquito vector. Here, we demonstrate by using a reverse genetics approach that the map-2 gene is essential for completion of the asexual cycle of P. falciparum, an unexpected result in view of the non-essentiality of the orthologous gene for P. berghei erythrocytic schizogony. This validates Pfmap-2 as a potential target for chemotherapeutic intervention. In contrast, the other P. falciparum MAPK, Pfmap-1, is required neither for in vitro schizogony and gametocytogenesis in erythrocytes, nor for gametogenesis and sporogony in the mosquito vector. However, Pfmap-2 protein levels are elevated in pfmap-1(-) parasites, suggesting that Pfmap-1 fulfils an important function in asexual parasites that necessitates compensatory adaptation in parasites lacking this enzyme.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号