首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the mechanisms that determine how phytoplankton adapt to warming will substantially improve the realism of models describing ecological and biogeochemical effects of climate change. Here, we quantify the evolution of elevated thermal tolerance in the phytoplankton, Chlorella vulgaris. Initially, population growth was limited at higher temperatures because respiration was more sensitive to temperature than photosynthesis meaning less carbon was available for growth. Tolerance to high temperature evolved after ≈ 100 generations via greater down‐regulation of respiration relative to photosynthesis. By down‐regulating respiration, phytoplankton overcame the metabolic constraint imposed by the greater temperature sensitivity of respiration and more efficiently allocated fixed carbon to growth. Rapid evolution of carbon‐use efficiency provides a potentially general mechanism for thermal adaptation in phytoplankton and implies that evolutionary responses in phytoplankton will modify biogeochemical cycles and hence food web structure and function under warming. Models of climate futures that ignore adaptation would usefully be revisited.  相似文献   

2.
Thermal adaptation of soil microbial respiration to elevated temperature   总被引:1,自引:0,他引:1  
In the short‐term heterotrophic soil respiration is strongly and positively related to temperature. In the long‐term, its response to temperature is uncertain. One reason for this is because in field experiments increases in respiration due to warming are relatively short‐lived. The explanations proposed for this ephemeral response include depletion of fast‐cycling, soil carbon pools and thermal adaptation of microbial respiration. Using a > 15 year soil warming experiment in a mid‐latitude forest, we show that the apparent ‘acclimation’ of soil respiration at the ecosystem scale results from combined effects of reductions in soil carbon pools and microbial biomass, and thermal adaptation of microbial respiration. Mass‐specific respiration rates were lower when seasonal temperatures were higher, suggesting that rate reductions under experimental warming likely occurred through temperature‐induced changes in the microbial community. Our results imply that stimulatory effects of global temperature rise on soil respiration rates may be lower than currently predicted.  相似文献   

3.
The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this ‘biological pump’ have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long‐term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3‐dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom‐water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower‐than‐modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom‐water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has exerted a first‐order control on Earth system evolution across Phanerozoic time.  相似文献   

4.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

5.
Rising carbon dioxide (CO2) concentrations in the atmosphere result in increasing global temperatures and ocean warming (OW). Concomitantly, dissolution of anthropogenic CO2 declines seawater pH, resulting in ocean acidification (OA) and altering marine chemical environments. The marine biological carbon pump driven by marine photosynthesis plays an important role for oceanic carbon sinks. Therefore, how ocean climate changes affect the amount of carbon fixation by primary producers is closely related to future ocean carbon uptake. OA may upregulate metabolic pathways in phytoplankton, such as upregulating ß-oxidation and the tricarboxylic acid cycle, resulting in increased accumulation of toxic phenolic compounds. Ocean warming decreases global phytoplankton productivity; however, regionally, it may stimulate primary productivity and change phytoplankton community composition, due to different physical and chemical environmental requirements of species. It is still controversial how OA and OW interactively affect marine carbon fixation by photosynthetic organisms. OA impairs the process of calcification in calcifying phytoplankton and aggravate ultraviolet (UV)-induced harms to the cells. Increasing temperatures enhance the activity of cellular repair mechanisms, which mitigates UV-induced damage. The effects of OA, warming, enhanced exposure to UV-B as well as the interactions of these environmental stress factors on phytoplankton productivity and community composition, are discussed in this review.  相似文献   

6.
Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis‐driven marine biological CO2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up‐regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa, which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration.  相似文献   

7.
Quantifying variation in ecosystem metabolism is critical to predicting the impacts of environmental change on the carbon cycle. We used a metabolic scaling framework to investigate how body size and temperature influence phytoplankton community metabolism. We tested this framework using phytoplankton sampled from an outdoor mesocosm experiment, where communities had been either experimentally warmed (+ 4 °C) for 10 years or left at ambient temperature. Warmed and ambient phytoplankton communities differed substantially in their taxonomic composition and size structure. Despite this, the response of primary production and community respiration to long‐ and short‐term warming could be estimated using a model that accounted for the size‐ and temperature dependence of individual metabolism, and the community abundance‐body size distribution. This work demonstrates that the key metabolic fluxes that determine the carbon balance of planktonic ecosystems can be approximated using metabolic scaling theory, with knowledge of the individual size distribution and environmental temperature.  相似文献   

8.
The responses of respiration and photosynthesis to temperature fluctuations in marine macroalgae have the potential to significantly affect coastal carbon fluxes and sequestration. In this study, the marine red macroalga Gracilaria lemaneiformis was cultured at three different temperatures (12, 19, and 26°C) and at high‐ and low‐nitrogen (N) availability, to investigate the acclimation potential of respiration and photosynthesis to temperature change. Measurements of respiratory and photosynthetic rates were made at five temperatures (7°C–33°C). An instantaneous change in temperature resulted in a change in the rates of respiration and photosynthesis, and the temperature sensitivities (i.e., the Q10 value) for both the metabolic processes were lower in 26°C‐grown algae than 12°C‐ or 19°C‐grown algae. Both respiration and photosynthesis acclimated to long‐term changes in temperature, irrespective of the N availability under which the algae were grown; respiration displayed strong acclimation, whereas photosynthesis only exhibited a partial acclimation response to changing growth temperatures. The ratio of respiration to gross photosynthesis was higher in 12°C‐grown algae, but displayed little difference between the algae grown at 19°C and 26°C. We propose that it is unlikely that respiration in G. lemaneiformis would increase significantly with global warming, although photosynthesis would increase at moderately elevated temperatures.  相似文献   

9.
Measurements of algal carbon metabolism in the light and the dark were conducted in (1) short-term (3-h) light and dark incubations, (2) a diel (24-h) experiment, and (3) a longer-term (4-d) carbon accumulation experiment to examine the relationship between photosynthetic rates, photosynthetic carbon metabolism in the light, and respiration and carbon metabolism in the ensuing dark period in natural assemblages of freshwater phytoplankton. High rates of photosynthesis and polysaccharide synthesis in the light were followed by high rates of respiration and polysaccharide utilization in the dark. Polysaccharide was the major respiratory substrate in the dark, and small molecular weight metabolites, lipids, and protein were less important sources of metabolic energy. The protein pool accumulated carbon during dark incubations, but more slowly than during active photosynthesis in the light. Because the intracellular macromolecular pools turn over at very different rates (polysaccharide > protein and lipid), patterns of short-term photosynthetic carbon metabolism are not necessarily indicative of the biochemical composition of the phytoplankton.  相似文献   

10.
Enhanced soil respiration in response to global warming may substantially increase atmospheric CO2 concentrations above the anthropogenic contribution, depending on the mechanisms underlying the temperature sensitivity of soil respiration. Here, we compared short‐term and seasonal responses of soil respiration to a shifting thermal environment and variable substrate availability via laboratory incubations. To analyze the data from incubations, we implemented a novel process‐based model of soil respiration in a hierarchical Bayesian framework. Our process model combined a Michaelis–Menten‐type equation of substrate availability and microbial biomass with an Arrhenius‐type nonlinear temperature response function. We tested the competing hypotheses that apparent thermal acclimation of soil respiration can be explained by depletion of labile substrates in warmed soils, or that physiological acclimation reduces respiration rates. We demonstrated that short‐term apparent acclimation can be induced by substrate depletion, but that decreasing microbial biomass carbon (MBC) is also important, and lower MBC at warmer temperatures is likely due to decreased carbon‐use efficiency (CUE). Observed seasonal acclimation of soil respiration was associated with higher CUE and lower basal respiration for summer‐ vs. winter‐collected soils. Whether the observed short‐term decrease in CUE or the seasonal acclimation of CUE with increased temperatures dominates the response to long‐term warming will have important consequences for soil organic carbon storage.  相似文献   

11.
Patterns and mechanisms of short‐term temperature acclimation and long‐term climatic adaptation of respiration among intraspecific populations are poorly understood, but both are potentially important in constraining respiratory carbon flux to climate warming across large geographic scales, as well as influencing the metabolic fitness of populations. Herein we report on leaf dark respiration of 33‐year‐old trees of jack pine (Pinus banksiana Lamb.) grown in three contrasting North American common gardens (0.9, 4.6, and 7.9 °C, mean annual temperature) comprised of identical populations of wide‐ranging geographic origins. We tested whether respiration rates in this evergreen conifer acclimate to prevailing ambient air temperatures and differ among populations. At each of the common gardens, observed population differences in respiration rates measured at a standard temperature (20 °C) were comparatively small and largely unrelated to climate of seed‐source origin. In contrast, respiration in all populations exhibited seasonal acclimation at all sites. Specific respiration rates at 20 °C inversely tracked seasonal variation in ambient air temperature, increasing with cooler temperatures in fall and declining with warmer temperatures in spring and summer. Such responses were similar among populations and sites, thus providing a general predictive equation regarding temperature acclimation of respiration for the species. Temperature acclimation was associated with variation in nitrogen (N) and soluble carbohydrate concentrations, supporting a joint enzyme and substrate‐based model of respiratory acclimation. Regression analyses revealed convergent relationships between respiration and the combination of needle N and soluble carbohydrate concentrations and between N‐based respiration (RN, μmol mol N? 1 s? 1) and soluble carbohydrate concentrations, providing evidence for general predictive relationships across geographically diverse populations, seasons, and sites. Overall, these findings demonstrate that seasonal acclimation of respiration modulates rates of foliar respiratory carbon flux in a widely distributed evergreen species, and does so in a predictable way. Genetic differences in specific respiration rate appear less important than temperature acclimation in downregulating respiratory carbon fluxes with climate warming across wide‐ranging sites.  相似文献   

12.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

13.
The combination of ocean acidification (OA) and global warming is expected to have a significant effect on the diversity and functioning of marine ecosystems, particularly on calcifying algae such as rhodoliths (maërl) that form extensive beds worldwide, from polar to tropical regions. In addition, the increasing frequency of extreme events, such as heat waves, threatens coastal ecosystems and may affect their capacity to fix blue carbon. The few studies where the simultaneous effects of both temperature and CO2 were investigated have revealed contradictory results. To assess the effect that high temperature spells can have on the maërl beds under OA, we tested the short‐time effects of temperature and CO2 on the net photosynthesis, respiration, and calcification of the recently described species Phymatolithon lusitanicum, the most common maërl species of southern Portugal. Photosynthesis, calcification, and respiration increased with temperature, and the differences among treatments were enhanced under high CO2. We found that in the short term, the metabolic rates of Phymatolithon lusitanicum will increase with CO2 and temperature as will the coupling between calcification and photosynthesis. However, under high CO2, this coupling will favor photosynthesis over calcification, which, in the long term, can have a negative effect on the blue carbon fixing capacity of the maërl beds from southern Portugal.  相似文献   

14.
15.
Predictions of warming and drying in the Mediterranean and other regions require quantifying of such effects on ecosystem carbon dynamics and respiration. Long‐term effects can only be obtained from forests in which seasonal drought is a regular feature. We carried out measurements in a semiarid Pinus halepensis (Aleppo pine) forest of aboveground respiration rates of foliage, Rf, and stem, Rt over 3 years. Component respiration combined with ongoing biometric, net CO2 flux [net ecosystem productivity (NEP)] and soil respiration measurements were scaled to the ecosystem level to estimate gross and net primary productivity (GPP, NPP) and carbon‐use efficiency (CUE=NPP/GPP) using 6 years data. GPP, NPP and NEP were, on average, 880, 350 and 211 g C m?2 yr?1, respectively. The above ground respiration made up half of total ecosystem respiration but CUE remained high at 0.4. Large seasonal variations in both Rf and Rt were not consistently correlated with seasonal temperature trends. Seasonal adjustments of respiration were observed in both the normalized rate (R20) and short‐term temperature sensitivity (Q10), resulting in low respiration rates during the hot, dry period. Rf in fully developed needles was highest over winter–spring, and foliage R20 was correlated with photosynthesis over the year. Needle growth occurred over summer, with respiration rates in developing needles higher than the fully developed foliage at most times. Rt showed a distinct seasonal maximum in May irrespective of year, which was not correlated to the winter stem growth, but could be associated with phenological drivers such as carbohydrate re‐mobilization and cambial activity. We show that in a semiarid pine forest photosynthesis and stem growth peak in (wet) winter and leaf growth in (dry) summer, and associated adjustments of component respiration, dominated by those in R20, minimize annual respiratory losses. This is likely a key for maintaining high CUE and ecosystem productivity similar to much wetter sites, and could lead to different predictions of the effect of warming and drying climate on productivity of pine forests than based on short‐term droughts.  相似文献   

16.
Aims Changes in light and temperature are among the most common and most profound environmental perturbations. The independent effects of light and temperature on photosynthesis and respiration are well studied in single leaves, but are less well studied in whole plants. The short and long term influence of light and temperature on carbon use efficiency is also poorly understood, and is commonly modeled to remain constant over a wide range of conditions. We sought to determine the primary effects of changing light at two growth temperatures on photosynthesis, respiration, and their balance, as defined by carbon use efficiency. Methods We separated respiration into growth and maintenance components using whole-canopy gas-exchange in an elevated CO2 environment in a controlled environment, and supplemented that information with tissue analysis. Important findings Decreases in light level decreased carbon use efficiency through a reduction in the maintenance coefficient, increased the growth coefficient, and reduced partitioning of N in protein. Growth temperature did not significantly affect either maintenance or growth respiration coefficients, suggesting that long-term temperature responses can differ greatly from short-term observations.  相似文献   

17.
Soil carbon losses to the atmosphere through soil respiration are expected to rise with ongoing temperature increases, but available evidence from mesic biomes suggests that such response disappears after a few years of experimental warming. However, there is lack of empirical basis for these temporal dynamics in soil respiration responses, and for the mechanisms underlying them, in drylands, which collectively form the largest biome on Earth and store 32% of the global soil organic carbon pool. We coupled data from a 10 year warming experiment in a biocrust‐dominated dryland ecosystem with laboratory incubations to confront 0–2 years (short‐term hereafter) versus 8–10 years (longer‐term hereafter) soil respiration responses to warming. Our results showed that increased soil respiration rates with short‐term warming observed in areas with high biocrust cover returned to control levels in the longer‐term. Warming‐induced increases in soil temperature were the main drivers of the short‐term soil respiration responses, whereas longer‐term soil respiration responses to warming were primarily driven by thermal acclimation and warming‐induced reductions in biocrust cover. Our results highlight the importance of evaluating short‐ and longer‐term soil respiration responses to warming as a mean to reduce the uncertainty in predicting the soil carbon–climate feedback in drylands.  相似文献   

18.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

19.
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof‐of‐concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.  相似文献   

20.
Temperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply. We measured the abundance of proteins involved in the dark (RuBisCO, rbcL) and light (Photosystem II, psbA) photosynthetic reactions, the content of chlorophyll a, carbon and nitrogen, and the rates of photosynthesis, respiration, and growth. We found that rbcL and psbA abundance increased with nutrient supply, whereas a temperature-induced increase in psbA occurred only in nutrient-replete treatments. Low temperature and abundant nutrients caused increased RuBisCO abundance, a pattern we observed also in natural phytoplankton assemblages across a wide latitudinal range. Photosynthesis and respiration increased with temperature only under nutrient-sufficient conditions. These results suggest that nutrient supply exerts a stronger effect than temperature upon both photosynthetic protein abundance and metabolic rates in Synechococcus sp. and that the temperature effect on photosynthetic physiology and metabolism is nutrient dependent. The preferential resource allocation into the light instead of the dark reactions of photosynthesis as temperature rises is likely related to the different temperature dependence of dark-reaction enzymatic rates versus photochemistry. These findings contribute to our understanding of the strategies for photosynthetic energy allocation in phytoplankton inhabiting contrasting environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号