首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Till now, no appropriate biomarkers for high‐risk population screening and prognosis prediction have been identified for patients with oesophageal squamous cell carcinoma (ESCC). In this study, by the combined use of data from the Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA)‐oesophageal carcinoma (ESCA), we aimed to screen dysregulated genes with prognostic value in ESCC and the genetic and epigenetic alterations underlying the dysregulation. About 222 genes that had at least fourfold change in ESCC compared with adjacent normal tissues were identified using the microarray data in GDS3838. Among these genes, only PDLIM2 was associated with nodal invasion and overall survival (OS) at the same time. The high PDLIM2 expression group had significantly longer OS and its expression was independently associated with better OS (HR: 0.64, 95% CI: 0.43‐0.95, P = 0.03), after adjustment for gender and pathologic stages. The expression of its exon 7/8/9/10 had the highest AUC value (0.724) and better prognostic value (HR: 0.43, 95% CI: 0.22‐0.83, P = 0.01) than total PDLIM2 expression. PDLIM2 DNA copy deletion was common in ESCC and was associated with decreased gene expression. The methylation status of two CpG sites (cg23696886 and cg20449614) in the proximal promoter region of PDLIM2 showed a moderate negative correlation with the gene expression in PDLIM2 copy neutral/amplification group. In conclusion, we infer that PDLIM2 expression might be a novel prognostic indicator for ESCC patients. Its exon 7/8/9/10 expression had the best prognostic value. Its down‐regulation might be associated with gene‐level copy deletion and promoter hypermethylation.  相似文献   

2.
Metastasis‐related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis‐associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis‐free survival (MFS) in the training set (GSE20685, n = 319). A metastasis‐associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high‐ and low‐risk groups in the training cohort. Patients with high‐risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53‐5.98; P < 0.001), disease‐free survival (DFS) (HR 4.69, 2.93‐7.50; P < 0.001) and overall survival (HR 4.06, 2.56‐6.45; P < 0.001) than patients with low‐risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical‐related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4‐mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.  相似文献   

3.
4.
Increasing evidence has verified that small nucleolar RNAs (snoRNAs) play significant roles in tumorigenesis and exhibit prognostic value in clinical practice. In the study, we analysed the expression profile and clinical relevance of snoRNAs from TCGA database including 530 ccRCC (clear cell renal cell carcinoma) and 72 control cases. By using univariate and multivariate Cox analysis, we established a six‐snoRNA signature and divided patients into high‐risk or low‐risk groups. We found patients in high‐risk group had significantly shorter overall survival and recurrence‐free survival than those in low‐risk group in test series, validation series and entire series by Kaplan‐Meier analysis. We also confirmed this signature had a great accuracy and specificity in 64 clinical tissue cases and 50 serum samples. Then, depending on receiver operating characteristic curve analysis we found the six‐snoRNA signature was an superior indicator better than conventional clinical factors (AUC = 0.732). Furthermore, combining the signature with TNM stage or Fuhrman grade were the optimal indicators (AUC = 0.792; AUC = 0.800) and processed the clinical applied value for ccRCC. Finally, we found the SNORA70B and its hose gene USP34 might directly regulate Wnt signalling pathway to promote tumorigenesis in ccRCC. In general, our study established a six‐snoRNA signature as an independent and superior diagnosis and prognosis indicator for ccRCC.  相似文献   

5.
6.
Domestic sheep (Ovis aries) can be divided into two groups with significantly different responses to hypoxic environments, determined by two allelic beta‐globin haplotypes. Haplotype A is very similar to the goat beta‐globin locus, whereas haplotype B has a deletion spanning four globin genes, including beta‐C globin, which encodes a globin with high oxygen affinity. We surveyed the beta‐globin locus using resequencing data from 70 domestic sheep from 42 worldwide breeds and three Ovis canadensis and two Ovis dalli individuals. Haplotype B has an allele frequency of 71.4% in O. aries and was homozygous (BB) in all five wild sheep. This shared ancestry indicates haplotype B is at least 2–3 million years old. Approximately 40 kb of the sequence flanking the ~37‐kb haplotype B deletion had unexpectedly low identity between haplotypes A and B. Phylogenetic analysis showed that the divergent region of sheep haplotype B is remarkably distinct from the beta‐globin loci in goat and cattle but still groups with the Ruminantia. We hypothesize that this divergent ~40‐kb region in haplotype B may be from an unknown ancestral ruminant and was maintained in the lineage to O. aries, but not other Bovidae, evolving independently of haplotype A. Alternatively, the ~40‐kb sequence in haplotype B was more recently acquired by an ancestor of sheep from an unknown non‐Bovidae ruminant, replacing part of haplotype A. Haplotype B has a lower nucleotide diversity than does haplotype A, suggesting a recent bottleneck, whereas the higher frequency of haplotype B suggests a subsequent spread through the global population of O. aries.  相似文献   

7.
Two bacterial strains used for industrial production of 2‐keto‐L‐gulonic acid (2‐KLG), Ketogulonigenium vulgare 2 and Bacillus thuringiensis 1514, were loaded onto the spacecraft Shenzhou VII and exposed to space conditions for 68 h in an attempt to increase their fermentation productivities of 2‐KLG. An optimal combination of mutants B. thuringiensis 320 and K. vulgare 2194 (KB2194‐320) was identified by systematically screening the pH and 2‐KLG production of 16 000 colonies. Compared with the coculture of parent strains, the conversion rate of L‐sorbose to 2‐KLG by KB2194‐320 in shake flask fermentation was increased significantly from 82·7% to 95·0%. Furthermore, a conversion rate of 94·5% and 2‐KLG productivity of 1·88 g l?1 h?1 were achieved with KB2194‐320 in industrial‐scale fermentation (260 m3 fermentor). An observed increase in cell number of K2194 (increased by 47·8%) during the exponential phase and decrease in 2‐KLG reductase activity (decreased by 46·0%) were assumed to explain the enhanced 2‐KLG production. The results suggested that the mutants KB2194‐320 could be ideal substitutes for the currently employed strains in the 2‐KLG fermentation process and demonstrated the feasibility of using spaceflight to breed high‐yielding 2‐KLG‐producing strains for vitamin C production.

Significance and Impact of the Study

KB2194‐320, a combination of two bacterial strains bred by spaceflight mutation, exhibited significantly improved 2‐KLG productivity and hence could potentially increase the efficiency and reduce the cost of vitamin C production by the two‐step fermentation process. In addition, a new pH indicator method was applied for rational screening of K2, which dramatically improved the efficiency of screening.  相似文献   

8.
9.

Background

Helicobacter pylori (H. pylori) infection is associated with the development of gastric cancer, although the mechanism is unclear. Herein, this study aimed to clarify the key genes and signaling pathways involved in H. pylori pathogenesis based on The Cancer Genome Atlas (TCGA) database and RNA sequencing analysis.

Materials and Methods

Forty‐nine gastric cancer samples (16 with H. pylori and 33 without H. pylori) and 35 cancer‐adjacent normal samples from TCGA database were analyzed by bioinformatics. The differentially expressed genes between H. pylori‐positive and H. pylori‐negative patients were verified in 18 gastric cancer (GC) samples (9 with H. pylori and 9 without H. pylori), which were analyzed using RNA sequencing. Survival analysis was carried out to explore associations between the differentially expressed genes and prognosis. Bioinformatics analysis was performed to determine the signaling pathways associated with H. pylori.

Results

The baseline level of clinical features from TCGA database and RNA sequencing showed no differences between the H. pylori‐positive and H. pylori‐negative GC groups (> 0.05). TP53 was shown to be upregulated in the H. pylori‐positive group in both TCGA database and RNA sequencing data, which also showed higher expression in the GC tissues than in adjacent normal tissues (< 0.05). CCDC151, CHRNB2, GMPR2, HDGFRP2, and VSTM2L were shown to be downregulated in the H. pylori‐positive group by both TCGA database and RNA sequencing, which also showed lower expression in the GC tissues than in adjacent normal tissues (< 0.05). GC patients with low expression levels of HDGFRP2 had a poor prognosis (< 0.05). Thirty‐three signaling pathways and 10 biological processes were found to be positively associated with H. pylori infection (< 0.05, FDR < 0.05).

Conclusions

These results indicate that some genes (TP53, CCDC151, CHRNB2, GMPR2, HDGFRP2, VSTM2L) and previously unidentified signaling pathways (eg, the Hippo signaling pathway) might play an important role in H. pylori‐associated GC.  相似文献   

10.
Kalanchoe daigremontiana (Crassulaceae) is a medicinal plant native to Madagascar. The aim of this study was to investigate the flavonoid content of an aqueous leaf extract from Kdaigremontiana (Kd), and assess its antiherpetic potential. The major flavonoid, kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 1 ), was isolated from the AcOEt fraction (Kd‐AC). The BuOH‐soluble fraction afforded quercetin 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside ( 2 ) and the new kaempferol 3‐Oβ‐d ‐xylopyranosyl‐(1 → 2)‐α‐l ‐rhamnopyranoside‐7‐Oβ‐d ‐glucopyranoside ( 3 ), named daigremontrioside. The crude extract, Kd‐AC fraction, flavonoids 1 and 2 were evaluated using acyclovir‐sensitive strains of HSV‐1 and HSV‐2. Kd‐AC was highly active against HSV‐1 (EC50 = 0.97 μg/ml, SI > 206.1) and HSV‐2 (EC50 = 0.72 μg/ml, SI > 277.7). Flavonoids 1 and 2 showed anti‐HSV‐1 (EC50 = 7.4 μg/ml; SI > 27 and EC50 = 5.8 μg/ml; SI > 8.6, respectively) and anti‐HSV‐2 (EC50 = 9.0 μg/ml; SI > 22.2 and EC50 = 36.2 μg/ml; SI > 5.5, respectively) activities, suggesting the contribution of additional substances to the antiviral activity.  相似文献   

11.
The KCNQ1 rs2237892 C→T gene polymorphism is reportedly associated with T2DM susceptibility, but various studies show conflicting results. To explore this association in the Asian population, a meta‐analysis of 15,736 patients from 10 individual studies was performed. The pooled odds ratios (ORs) and their 95% confidence intervals (CIs) were evaluated using random‐effect or fixed‐effect models. A significant relationship between the KCNQ1 rs2237892 C→T gene polymorphism and T2DM was observed in the Asian population under the allelic (OR, 1.350; 95% CI, 1.240–1.480; P < 0.00001), recessive (OR: 0.650; 95% CI: 0.570–0.730; P < 0.00001), dominant (OR: 1.450; 95% CI: 1.286–1.634; P < 0.00001), and additive (OR: 1.346; 95% CI: 1.275–1.422; P < 0.00001) genetic models. In the subgroup analysis by race, a significant association was found in Chinese, Korean and Malaysia population, but not in Indian population. KCNQ1 rs2237892 C→T gene polymorphism was found to be significantly associated with increased T2DM risk in the Asian population, except Indian population. The C allele of the KCNQ1 rs2237892 C→T gene polymorphism may confer susceptibility to T2DM.  相似文献   

12.
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long‐reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi‐C, we generated a high‐continuity chromosome‐scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome‐size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male‐specific duplicate of the anti‐Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex‐specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+) from XX genetic females (amhr2by?). Our high‐quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex‐determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.  相似文献   

13.
14.
15.
16.
Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration‐tau (FTDP‐17/FTLD‐tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP‐17 cause elevation of tau isoforms with four microtubule‐binding repeat domains (4R‐tau) compared to those with three repeats (3R‐tau). On the basis of two well‐characterised monoclonal antibodies against 3R‐ and 4R‐tau, we developed novel, sensitive immuno‐PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (= 46), corticobasal syndrome (CBS;= 22), AD (= 11), Parkinson's disease with dementia (PDD;= 16) and 35 controls revealed selective decreases of immunoreactive 4R‐tau in CSF of PSP and AD patients compared with controls, and lower 4R‐tau levels in AD compared with PDD. These decreases could be related to the disease‐specific conformational masking of the RD4‐binding epitope because of abnormal folding and/or aggregation of the 4R‐tau isoforms in tauopathies or increased sequestration of the 4R‐tau isoforms in brain tau pathology.  相似文献   

17.
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain‐of‐function platform, termed ‘iFOX (inducible Full‐length cDNA OvereXpressor gene)‐Hunting’, for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway‐compatible plant gene expression vector containing a methoxyfenozide‐inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium‐mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full‐length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl‐1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl‐CoA binding protein (ACBP) gene designated BnACBP1‐like. The early senescence phenotype conferred by BnACBP1‐like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA‐Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1‐like expression. Our results demonstrate the utility of iFOX‐Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.  相似文献   

18.
In this study, we investigated how miR‐10b‐3p regulated the proliferation, migration, invasion in hepatocellular carcinoma (HCC) at both in vitro and in vivo levels. CMTM5 was among the differentially expressed genes (data from TCGA). The expression of miR‐10b‐3p and CMTM5 was detected by qRT‐PCR and Western blot (WB). TargetScan was used to acquire the binding sites. Dual‐luciferase reporter gene assay was used to verify the direct target relationship between miR‐10b‐3p and CMTM5. WB analysis proved that miR‐10b‐3p suppressed CMTM5 expression. Furthermore, proliferation, invasion and migration of HCC cells were measured by MTT assay, colony formation assay, transwell assay and wound‐healing assay, respectively. Kaplan‐Meier plotter valued the overall survival of CMTM5. Finally, xenograft assay was also conducted to verify the effects of miR‐10b‐3p/CMTM5 axis in vivo. Up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were detected in HCC tissues and cell lines. CMTM5 was verified as a target gene of miR‐10b‐3p. The overexpression of CMTM5 contributed to the suppression of the proliferative, migratory and invasive abilities of HCC cells. Moreover, the up‐regulation of miR‐10b‐3p and down‐regulation of CMTM5 were observed to be associated with worse overall survival. Lastly, we have confirmed the carcinogenesis‐related roles of miR‐10b‐3p and CMTM5 in vivo. We concluded that the up‐regulation of miR‐10b‐3p promoted the progression of HCC cells via targeting CMTM5.  相似文献   

19.
Plasma cholinesterase (PCHE) activity is an important auxiliary test in human clinical medicine. It can distinguish liver diseases from non‐liver diseases and help detect organophosphorus poisoning. Animal experiments have confirmed that PCHE activity is associated with obesity and hypertension and changes with physiological changes in an animal's body. The objective of this study was to locate the genetic loci responsible for PCHE activity variation in ducks. PCHE activity of Pekin duck × mallard F2 ducks at 3 and 8 weeks of age were analyzed, and genome‐wide association studies were conducted. A region of about 1.5 Mb (21.8–23.3 Mb) on duck chromosome 9 was found to be associated with PCHE activity at both 3 and 8 weeks of age. The top SNP, g.22643979C>T in the butyrylcholinesterase (BCHE) gene, was most highly associated with PCHE activity at 3 weeks (?logP = 21.45) and 8 weeks (?logP = 27.60) of age. For the top SNP, the strong associations of CC and CT genotypes with low PCHE activity and the TT genotype with high PCHE activity indicates the dominant inheritance of low PCHE activity. Problems with block inheritance or linkage exist in this region. This study supports that BCHE is a functional gene for determining PCHE levels in ducks and that the genetic variations around this gene can cause phenotypic variations of PCHE activity.  相似文献   

20.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号