首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urbanisation is affecting ecological communities worldwide. Despite the disproportionate impact on farmland over other habitats, the effect on farmland bird communities has been poorly studied. Considering the still-alarming conservation status of farmland birds, investigations into the effects of pressures such as urbanisation on those communities could be of great interest for their conservation. We studied the urbanisation effects on functional diversity using existing indices designed for the purpose of standardisation. This study uses a functional character measuring species habitat specialisation for indices calculation. A bird survey was conducted on 92 plots of 1 × 1 km chosen after stratification on the proportion of urban area and farmland habitat (either 0, 25, 50, 75%), with the focus on farmland habitat. Two aspects of urbanisation were studied: the intensity and the age of the urbanisation. Functional richness was found to decrease with urbanisation, while functional evenness and divergence increased in a nonlinear way. No significant difference was observed in functional richness and evenness with urbanisation age, however extreme ages of urbanisation (young and old) showed higher niche differentiation concerning specialisation. This implies less important resource competition for species and a more vulnerable state for the ecosystem. Using functional diversity indices based on specialisation allows a better insight in the consequences of urbanisation on diversity/ecosystem–community functioning, which is of crucial importance in the face of global changes.  相似文献   

2.
Urban areas occupy a large and growing proportion of the earth. Such sites exhibit distinctive characteristics relative to adjacent rural habitats, and many species have colonised and now successfully exploit urban habitats. The change in selection pressures as a result of urbanisation has led to trait divergence in some urban populations relative to their rural counterparts, but studies have generally been local in scale and the generality of differentiation thus remains unknown. The European blackbird Turdus merula is one of the commonest urban bird species in the Western Palearctic, but populations vary substantially in the length of time they have been urbanised. Here we investigate patterns of morphological variation in European blackbirds occupying 11 paired urban and rural habitats across much of the urbanised range of this species and spanning 25° of latitude. First, we assessed the extent to which urban and rural blackbirds are differentiated morphologically and the consistency of any differentiation across the range. Paired urban and rural Blackbird populations frequently exhibited significant morphological differences, but the magnitude and direction of differentiation was site dependent. We then investigated whether the nature of latitudinal gradients in body‐size differed between urban and rural populations, as predicted by differences in the climatic regimes of urban and rural areas. Blackbird body‐size exhibited strong latitudinal gradients, but their form did not differ significantly between urban and rural habitats. The latitudinal gradient in body size may be a consequence of Seebohm's rule, that more migratory populations occurring at high latitudes have longer wings. We conclude that while there can be substantial morphological variation between adjacent urban and rural bird populations, such differentiation may not apply across a species’ range. Locality specific differentiation of urban and rural blackbirds may arise if the selection pressures acting on blackbird morphology vary in an inconsistent manner between urban and rural habitats. Alternatively, phenotypic divergence could arise in a stochastic manner depending on the morphological traits of colonists, through founder effects.  相似文献   

3.
4.
5.
6.
Low functional diversity and no redundancy in British avian assemblages   总被引:5,自引:1,他引:4  
1. Spatial and temporal patterns in functional diversity can reveal the patterns and processes behind community assembly and whether ecological redundancy exists. Here, we analyse functional diversity in British avian assemblages over a period of about 20 years. 2. Functional diversity is generally lower than expected by chance, indicating that assemblages contain species with relatively similar functional traits. One potential explanation is filtering for traits suitable to particular habitats, though other explanations exist. 3. There was no evidence of ecological redundancy over the 20 years. In fact, changes in functional diversity were almost exactly proportional to changes in species richness. 4. The absence of functional redundancy results from little redundancy intrinsic to the species' functional relationships and also because compositional change was nonrandom. Observed extinction and colonization events caused greater changes in functional diversity than if these events were random. 5. Our findings suggest that community assembly is influenced by the traits of species and that observed changes in functional diversity provide no reason to believe that the functioning of natural systems is buffered against change by ecological redundancy.  相似文献   

7.
8.
9.
Human impacts on genetic diversity are poorly understood yet critical to biodiversity conservation. We used 175 247 COI sequences collected between 1980 and 2016 to assess the global effects of land use and human density on the intraspecific genetic diversity of 17 082 species of birds, fishes, insects and mammals. Human impacts on mtDNA diversity were taxon and scale‐dependent, and were generally weak or non‐significant. Spatial analyses identified weak latitudinal diversity gradients as well as negative effects of human density on insect diversity, and negative effects of intensive land use on fish diversity. The observed effects were predominantly associated with species turnover. Time series analyses found nearly an equal number of positive and negative temporal trends in diversity, resulting in no net monotonic trend in diversity over this time period. Our analyses reveal critical data and theory gaps and call for increased efforts to monitor global genetic diversity.  相似文献   

10.
Rainfall and herbivory shape savannah herbaceous communities, but these disturbances are being altered globally. To assess potential consequences of such alterations, we evaluated herbivore effects on species and functional diversity during an episodic drought in a sodic savannah using data collected from long-term herbivore exclosures in the Kruger National Park, South Africa. Herbaceous life forms are rarely acknowledged as distinct functional entities. Moreover, the functional ecology of forbs remains elusive. Here, we present disturbances–responses by forbs separately from grasses. We hypothesised that combinations of intense utilisation and drought would be associated with low diversity and high dominance at species and functional levels for both life forms. Contrary to our hypothesis, low forb and grass diversity was associated with long-term herbivore exclusion, which exceeded expected undesirable effects of intense utilisation and drought. Grasses responded less sensitively, suggesting that forbs respond dynamically to changes in herbivore assemblage when these alterations are combined with drought. Consistent with patterns in savannah systems, forbs contributed significantly to species and functional trait diversity. High forb diversity is suggested to enhance resilience of this nutrient-rich ecosystem against declines in its functioning when subjected to drought and alterations in herbivory.  相似文献   

11.
The conversion of natural, or seminatural, habitats to agricultural land and changes in agricultural land use are significant drivers of biodiversity loss. Within the context of land‐sharing versus land‐sparing debates, large‐scale commercial agriculture is known to be detrimental to biodiversity, but the effects of small‐scale subsistence farming on biodiversity are disputed. This poses a problem for sustainable land‐use management in the Global South, where approximately 30% of farmland is small‐scale. Following a rapid land redistribution program in Zimbabwe, we evaluated changes in avian biodiversity by examining richness, abundance, and functional diversity. Rapid land redistribution has, in the near term, resulted in increased avian abundance in newly farmed areas containing miombo woodland and open habitat. Conversion of seminatural ranched land to small‐scale farms had a negative impact on larger‐bodied birds, but species richness increased, and birds in some feeding guilds maintained or increased abundance. We found evidence that land‐use change caused a shift in the functional traits of the communities present. However, functional analyses may not have adequately reflected the trait filtering effect of land redistribution on large species. Whether newly farmed landscapes in Zimbabwe can deliver multiple benefits in terms of food production and habitat for biodiversity in the longer term is an open question. When managing agricultural land transitions, relying on taxonomic measures of diversity, or abundance‐weighted measures of function diversity, may obscure important information. If the value of smallholder‐farmed land for birds is to be maintained or improved, it will be essential to ensure that a wide array of habitat types is retained alongside efforts to reduce hunting and persecution of large bird species.  相似文献   

12.
Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short‐ and long‐term persistence of populations and species. However, the relative spatio‐temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23‐year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool.  相似文献   

13.
14.
The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics.  相似文献   

15.
The ecological impacts of meeting rising demands for food production can potentially be mitigated by two competing land‐use strategies: off‐setting natural habitats through intensification of existing farmland (land sparing), or elevating biodiversity within the agricultural matrix via the integration of “wildlife‐friendly” habitat features (land sharing). However, a key unanswered question is whether sparing or sharing farming would best conserve functional diversity, which can promote ecosystem stability and resilience to future land‐use change. Focusing on bird communities in tropical cloud forests of the Colombian Andes, we test the performance of each strategy in conserving functional diversity. We show that multiple components of avian functional diversity in farmland are positively related to the proximity and extent of natural forest. Using landscape and community simulations, we also show that land‐sparing agriculture conserves greater functional diversity and predicts higher abundance of species supplying key ecological functions than land sharing, with sharing becoming progressively inferior with increasing isolation from remnant forest. These results suggest low‐intensity agriculture is likely to conserve little functional diversity unless large blocks of adjacent natural habitat are protected, consistent with land sparing. To ensure the retention of functionally diverse ecosystems, we urgently need to implement mechanisms for increasing farmland productivity whilst protecting spared land.  相似文献   

16.
The human leukocyte antigen (HLA; known as MHC in other vertebrates) plays a central role in the recognition and presentation of antigens to the immune system and represents the most polymorphic gene cluster in the human genome [1]. Pathogen-driven balancing selection (PDBS) has been previously hypothesized to explain the remarkable polymorphism in the HLA complex, but there is, as yet, no direct support for this hypothesis [2 and 3]. A straightforward prediction coming out of the PDBS hypothesis is that populations from areas with high pathogen diversity should have increased HLA diversity in relation to their average genomic diversity. We tested this prediction by using HLA class I genetic diversity from 61 human populations. Our results show that human colonization history explains a substantial proportion of HLA genetic diversity worldwide. However, between-population variation at the HLA class I genes is also positively correlated with local pathogen richness (notably for the HLA B gene), thus providing support for the PDBS hypothesis. The proportion of variations explained by pathogen richness is higher for the HLA B gene than for the HLA A and HLA C genes. This is in good agreement with both previous immunological and genetic data suggesting that HLA B could be under a higher selective pressure from pathogens.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号