首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
3.
Long noncoding RNAs (lncRNAs) are single‐stranded RNA molecules longer than 200 nt that regulate many cellular processes. MicroRNA 155 host gene (MIR155HG) encodes the microRNA (miR)‐155 that regulates various signalling pathways of innate and adaptive immune responses against viral infections. MIR155HG also encodes a lncRNA that we call lncRNA‐155. Here, we observed that expression of lncRNA‐155 was markedly upregulated during influenza A virus (IAV) infection both in vitro (several cell lines) and in vivo (mouse model). Interestingly, robust expression of lncRNA‐155 was also induced by infections with several other viruses. Disruption of lncRNA‐155 expression in A549 cells diminished the antiviral innate immunity against IAV. Furthermore, knockout of lncRNA‐155 in mice significantly increased IAV replication and virulence in the animals. In contrast, overexpression of lncRNA‐155 in human cells suppressed IAV replication, suggesting that lncRNA‐155 is involved in host antiviral innate immunity induced by IAV infection. Moreover, we found that lncRNA‐155 had a profound effect on expression of protein tyrosine phosphatase 1B (PTP1B) during the infection with IAV. Inhibition of PTP1B by lncRNA‐155 resulted in higher production of interferon‐beta (IFN‐β) and several critical interferon‐stimulated genes (ISGs). Together, these observations reveal that MIR155HG derived lncRNA‐155 can be induced by IAV, which modulates host innate immunity during the virus infection via regulation of PTP1B‐mediated interferon response.  相似文献   

4.
Suppressor of cytokine signaling proteins (SOCS) are a family of intracellular cytokine inducible proteins, consisting of eight members. They are involved in the complex control of the inflammatory response through their actions on various signaling pathways, including the JAK/STAT and NF-κB pathways. A series of studies has shown that SOCS proteins are involved in the regulation and progression of immune responses in microglia cells. The accumulated data suggest that modulation of SOCS expression could be a target for drug development aimed at controlling inflammation in the brain. This review focuses on the current understanding of SOCS proteins involvement in inflammation-based neurodegenerative diseases and their role as therapeutic targets in future approaches.  相似文献   

5.
6.
7.
Osteoclast differentiation is dependent on TGF-beta to prime precursors to the osteoclast lineage. The mechanism by which TGF-beta enables osteoclast formation is unknown. One possibility is that TGF-beta opposes pro-inflammatory JAK/STAT signalling. Recently, we showed that TGF-beta-induces SOCS3, an inhibitor of the JAK/STAT pathway, in precursors and enhances SOCS3 in RANKL-induced osteoclasts. We therefore elected to test the role of SOCS3 in the effect of other regulators of osteoclastic differentiation. We found that TNF-alpha-induced osteoclasts also express SOCS3 and TGF-beta strongly up-regulates this. Moreover, TNF-alpha-induced osteoclast differentiation and total resorbed bone area were enhanced in SOCS3-retrovirally infected precursors, whereas antisense knockdown of SOCS3 suppressed formation and the augmentative effect of TGF-beta. Furthermore, SOCS3 overexpression blunted the anti-osteoclastic effect of IFN-beta but not IL-10. This suggests that TGF-beta-induced expression of SOCS3 may represent a crucial mechanism by which TGF-beta antagonizes specific anti-osteoclastic JAK/STAT signals, priming precursors for resorption rather than inflammatory functions.  相似文献   

8.
9.
Type I IFNs are critical players in host innate and adaptive immunity. IFN signaling is tightly controlled to ensure appropriate immune responses as imbalance could result in uncontrolled inflammation or inadequate responses to infection. It is therefore important to understand how type I IFN signaling is regulated. Here we have investigated the mechanism by which suppressor of cytokine signaling 1 (SOCS1) inhibits type I IFN signaling. We have found that SOCS1 inhibits type I IFN signaling not via a direct interaction with the IFN α receptor 1 (IFNAR1) receptor component but through an interaction with the IFNAR1-associated kinase Tyk2. We have characterized the residues/regions involved in the interaction between SOCS1 and Tyk2 and found that SOCS1 associates via its SH2 domain with conserved phosphotyrosines 1054 and 1055 of Tyk2. The kinase inhibitory region of SOCS1 is also essential for its interaction with Tyk2 and inhibition of IFN signaling. We also found that Tyk2 is preferentially Lys-63 polyubiquitinated and that this activation reaction is inhibited by SOCS1. The consequent effect of SOCS1 inhibition of Tyk2 not only results in a reduced IFN response because of inhibition of Tyk2 kinase-mediated STAT signaling but also negatively impacts IFNAR1 surface expression, which is stabilized by Tyk2.  相似文献   

10.
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.  相似文献   

11.
Influenza A virus (IAV) infection regulates the expression of numerous host genes. However, the precise mechanism underlying implication of these genes in IAV pathogenesis remains largely unknown. Here, we employed isobaric tags for relative and absolute quantification (iTRAQ) to identify host proteins regulated by IAV infection. iTRAQ analysis of mouse lungs infected or uninfected with IAV showed a total of 167 differentially upregulated proteins in response to the viral infection. Interestingly, we observed that p27Kip1, a potent cyclin‐dependent kinase inhibitor, was markedly induced by IAV both at mRNA and protein levels through in vitro and in vivo studies. Furthermore, it was shown that innate immune signalling positively regulated p27Kip1 expression in response to IAV infection. Ectopic expression of p27Kip1 in A549 cells dramatically inhibited IAV replication, whereas, p27Kip1 knockdown significantly enhanced the virus replication. in vivo experiments demonstrated that p27Kip1 knockout (KO) mice were more susceptible to IAV than wild‐type (WT) mice: exhibiting higher viral load in lung tissue, faster body‐weight loss, reduced survival rate and more severe organ damage. Moreover, we found that p27Kip1 overexpression facilitated the degradation of viral NS1 protein, caused a dramatic STAT1 activation and promoted the expression of IFN‐β and several critical antiviral interferon‐stimulated genes (ISGs). Increased p27Kip1 expression also restricted infections of several other viruses. Conversely, IAV‐infected p27Kip1 KO mice exhibited a sharp increase in NS1 protein accumulation, reduced level of STAT1 activation and decreased expression of IFN‐β and the ISGs in the lung compared to WT animals. These findings reveal a key role of p27Kip1 in enhancing antiviral innate immunity.  相似文献   

12.
大量实验研究和临床观察资料证明,SOCS蛋白与细胞信号转导和多种重要疾病的发生发展有着密切的关系。同时随着对JAK/STAT通路和单个SOCS蛋白功能研究的深入,SOCS蛋白在辐射导致细胞周期阻滞信号传导以及与细胞DNA损伤和修复机制相关作用机理将成为未来的研究方向之一。近年来随着重离子治癌临床应用的展开,重离子对细胞辐射损伤和修复信号转导可能与SOCS蛋白相关的研究对于重离子的安全应用提供了理论和实验依据。  相似文献   

13.
Type I interferon (IFN) production plays pivotal roles in host antiviral innate immune responses, but an excessive production of type I IFN leads to the development of immunopathological conditions. Investigations on the regulatory mechanisms underlying host type I IFN production are currently of great interest. Here, we found that the expression of lectin family member Siglec1 was upregulated by viral infection in macrophages, which was dependent on the IFN/JAK/STAT1 signaling pathway. Siglec1 was found to negatively regulate viral infection-triggered type I IFN production. Mechanistically, Siglec1 associates with DAP12 to recruit and activate the scaffolding function of SHP2; SHP2 then recruits E3 ubiquitin ligase TRIM27, which induces TBK1 degradation via K48-linked ubiquitination at Lys251 and Lys372. Therefore, viral infection-induced upregulation of Siglec1 feedback loop inhibits type I IFN production and suppresses antiviral innate immune responses. Our study outlines a novel mechanism of negative regulation of type I IFN production, which may help virus to escape immune elimination.  相似文献   

14.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

15.
The non‐structural protein 1 (A/NS1) of influenza A viruses (IAV) harbours several src‐homology domain (SH) binding motifs that are required for interaction with cellular proteins. The SH3 binding motif at aa212‐217 [PPLPPK] of A/NS1 was shown to be essential for binding to the cellular adaptor proteins CRK and CRKL. Both regulate diverse cellular effector pathways, including activation of the MAP‐kinase JNK that in turn mediates antiviral responses to IAV infection. By studying functional consequences of A/NS1–CRK interaction we show here that A/NS1 binding to CRK contributes to suppression of the antiviral‐acting JNK–ATF2 pathway. However, only IAV that encode an A/NS1‐protein harbouring the CRK/CRKL SH3 binding motif PPLPPK were attenuated upon downregulation of CRKI/II and CRKL, but not of CRKII alone. The PPLPPK site‐harbouring candidate strains could be discriminated from other strains by a pronounced viral activation of the JNK–ATF2 signalling module that was even further boosted upon knock‐down of CRKI/II. Interestingly, this enhanced JNK activation did not alter type‐I IFN‐expression, but rather resulted in increased levels of virus‐induced cell death. Our results imply that binding capacity of A/NS1 to CRK/CRKL has evolved in virus strains that over‐induce the antiviral acting JNK–ATF2 signalling module and helps to suppress the detrimental apoptosis promoting action of this pathway.  相似文献   

16.
17.
18.
19.
Type I interferons (IFNs) function as the first line of defense against viral infections by modulating cell growth, establishing an antiviral state and influencing the activation of various immune cells. Viruses such as influenza have developed mechanisms to evade this defense mechanism and during infection with influenza A viruses, the non-structural protein 1 (NS1) encoded by the virus genome suppresses induction of IFNs-α/β. Here we show that expression of avian H5N1 NS1 in HeLa cells leads to a block in IFN signaling. H5N1 NS1 reduces IFN-inducible tyrosine phosphorylation of STAT1, STAT2 and STAT3 and inhibits the nuclear translocation of phospho-STAT2 and the formation of IFN-inducible STAT1:1-, STAT1:3- and STAT3:3- DNA complexes. Inhibition of IFN-inducible STAT signaling by NS1 in HeLa cells is, in part, a consequence of NS1-mediated inhibition of expression of the IFN receptor subunit, IFNAR1. In support of this NS1-mediated inhibition, we observed a reduction in expression of ifnar1 in ex vivo human non-tumor lung tissues infected with H5N1 and H1N1 viruses. Moreover, H1N1 and H5N1 virus infection of human monocyte-derived macrophages led to inhibition of both ifnar1 and ifnar2 expression. In addition, NS1 expression induces up-regulation of the JAK/STAT inhibitors, SOCS1 and SOCS3. By contrast, treatment of ex vivo human lung tissues with IFN-α results in the up-regulation of a number of IFN-stimulated genes and inhibits both H5N1 and H1N1 virus replication. The data suggest that NS1 can directly interfere with IFN signaling to enhance viral replication, but that treatment with IFN can nevertheless override these inhibitory effects to block H5N1 and H1N1 virus infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号