首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction‐immigration dynamics. This is in contrast to the strong effect of historical climate observed on the mainland, possibly because surrounding oceans buffer against strong climate oscillations and because geography is a strong determinant of island richness, endemism and network roles.  相似文献   

2.
Until complete reproductive isolation is achieved, the extent of differentiation between two diverging lineages is the result of a dynamic equilibrium between genetic isolation and mixing. This is especially true for hybrid taxa, for which the degree of isolation in regard to their parental species is decisive in their capacity to rise as a new and stable entity. In this work, we explored the past and current patterns of hybridization and divergence within a complex of closely related butterflies in the genus Coenonympha in which two alpine species, C. darwiniana and C. macromma, have been shown to result from hybridization between the also alpine C. gardetta and the lowland C. arcania. By testing alternative scenarios of divergence among species, we show that gene flow has been uninterrupted throughout the speciation process, although leading to different degrees of current genetic isolation between species in contact zones depending on the pair considered. Nonetheless, at broader geographic scale, analyses reveal a clear genetic differentiation between hybrid lineages and their parental species, pointing out to an advanced stage of the hybrid speciation process. Finally, the positive correlation observed between ecological divergence and genetic isolation among these butterflies suggests a potential role for ecological drivers during their speciation processes.  相似文献   

3.
The sensory drive hypothesis of speciation predicts that divergence in communication systems will occur when environments differ and that this sensory divergence can ultimately promote speciation. The factors affecting geographic evolution in acoustic signals remain poorly understood, especially in the contexts of high gene flow. This study investigated variation patterns in peak frequency emitted by the Chinese endemic Myotis davidii on a broad geographic scale by evaluating the relative importance of morphological, environmental, geographic, and genetic variables. Significant variation in peak frequency was observed among regions, but peak frequencies among populations within region had some percentage of similarity. Differences in peak frequency were not associated with morphological difference, genetic structure, and geographic distance among regions, which suggested that peak frequency divergences in M. davidii were not the primary driver of regions' isolation in a context of weak gene flow. Within the Middle East Plain (MEP), one of the regions delineated in this study, peak frequency differences of M. davidii were not significantly correlated with genetic distance and geographic distance among populations, suggesting that peak frequency was not be subject to cultural drift within MEP. Our results provide evidence that geographic variation in echolocation call design may evolve as a consequence of local adaptation to climate conditions.  相似文献   

4.
Speciation in phytophagous insects is commonly associated with shifts in host use. Using a phylogenetic framework to identify recently diverged taxa that have undergone a radical host shift, this study focuses on how reconstruction of the historical demography of a species, in conjunction with branching patterns between species, provides insight into mode of speciation. Analyses of mitochondrial cytochrome oxidase I sequences indicate that the leaf beetle Ophraella communa exhibits significant population structure, as shown by patterns of genealogical relationships among mitochondrial haplotypes and high FST-values. However, the absence of regional localization of old clades of haplotypes, negative Tajima's D, and unimodal rather than bimodal frequency distribution of the number of pairwise differences between sequences suggests an absence of long-term barriers to gene flow. Furthermore, we found no evidence of isolation by distance. This pattern of genetic variation is consistent with episodes of gene flow on a large geographic scale, perhaps owing to Pleistocene changes in climate. Ophraella communa and its sister species O. bilineata diverged during the early Pleistocene. The evidence of dynamic population structure in O. communa, potentially including episodic but massive gene flow, suggests that reproductive isolation evolved quite rapidly on a localized geographic scale, because speciation would probably have been reversed by gene flow if the evolution of reproductive isolation had been prolonged. That is, gene flow occasioned by range shifts during the Pleistocene would likely have interrupted speciation unless it occurred very rapidly. Sequence diversity implies a large effective population size (> 106) in both O. communa and O. bilineata. However, a model based on a drastic bottleneck did not have a lower likelihood than a model with no bottleneck, simply because the time since speciation has been great enough for coalescence to a single ancestor that existed after the speciation event. Sequence diversity in itself, without reference to the time since speciation, cannot provide evidence on the demography of speciation.  相似文献   

5.
物种形成过程是生物多样性形成的基础, 长期以来一直是进化生物学的中心议题之一。传统的异域物种形成理论认为, 地理隔离是物种分化的主要决定因子, 物种形成只有在种群之间存在地理隔离的情况下才能发生。近年来, 随着种群基因组学的发展和溯祖理论分析方法的完善, 种群间存在基因流情况下的物种形成成为进化生物学领域新的研究焦点。物种形成过程中是否有基因流的发生?基因流如何影响物种的形成与分化?基因流存在条件下物种形成的生殖隔离机制是什么?根据已发表的相关文献资料, 作者综述了当前物种形成研究中基因流的时间和空间分布模式、基因流对物种分化的影响以及生殖隔离机制形成等问题, 指出基因流存在条件下的物种形成可能是自然界普遍发生的一种模式。  相似文献   

6.
Island radiations have played a major role in shaping our current understanding of allopatric, sympatric and parapatric speciation. However, the fact that species divergence correlates with island size emphasizes the importance of geographic isolation (allopatry) in speciation. Based on molecular and morphological data, we investigated the diversification of the land snail genus Theba on the two Canary Islands of Lanzarote and Fuerteventura. Due to the geological history of both islands, this study system provides ideal conditions to investigate the interplay of biogeography, dispersal ability and differentiation in generating species diversity. Our analyses demonstrated extensive cryptic diversification of Theba on these islands, probably driven mainly by non-adaptive allopatric differentiation and secondary gene flow. In a few cases, we observed a complete absence of gene flow among sympatrically distributed forms suggesting an advanced stage of speciation. On the Jandía peninsula genome scans suggested genotype-environment associations and potentially adaptive diversification of two closely related Theba species to different ecological environments. We found support for the idea that genetic differentiation was enhanced by divergent selection in different environments. The diversification of Theba on both islands is therefore best explained by a mixture of non-adaptive and adaptive speciation, promoted by ecological and geomorphological factors.  相似文献   

7.
Questions about how shifting distributions contribute to species diversification remain virtually without answer, even though rapid climate change during the Pleistocene clearly impacted genetic variation within many species. One factor that has prevented this question from being adequately addressed is the lack of precision associated with estimates of species divergence made from a single genetic locus and without incorporating processes that are biologically important as populations diverge. Analysis of DNA sequences from multiple variable loci in a coalescent framework that (i) corrects for gene divergence pre-dating speciation, and (ii) derives divergence-time estimates without making a priori assumptions about the processes underlying patterns of incomplete lineage sorting between species (i.e. allows for the possibility of gene flow during speciation), is critical to overcoming the inherent logistical and analytical difficulties of inferring the timing and mode of speciation during the dynamic Pleistocene. Estimates of species divergence that ignore these processes, use single locus data, or do both can dramatically overestimate species divergence. For example, using a coalescent approach with data from six loci, the divergence between two species of montane Melanoplus grasshoppers is estimated at between 200,000 and 300,000 years before present, far more recently than divergence estimates made using single-locus data or without the incorporation of population-level processes. Melanoplus grasshoppers radiated in the sky islands of the Rocky Mountains, and the analysis of divergence between these species suggests that the isolation of populations in multiple glacial refugia was an important factor in promoting speciation. Furthermore, the low estimates of gene flow between the species indicate that reproductive isolation must have evolved rapidly for the incipient species boundaries to be maintained through the subsequent glacial periods and shifts in species distributions.  相似文献   

8.
Adaptive divergence in coloration is expected to produce reproductive isolation in species that use colourful signals in mate choice and species recognition. Indeed, many adaptive radiations are characterized by differentiation in colourful signals, suggesting that divergent selection acting on coloration may be an important component of speciation. Populations in the Anolis marmoratus species complex from the Caribbean island of Guadeloupe display striking divergence in the colour and pattern of adult males that occurs over small geographic distances, suggesting strong divergent selection. Here we test the hypothesis that divergence in coloration results in reduced gene flow among populations. We quantify variation in adult male coloration across a habitat gradient between mesic and xeric habitats, use a multilocus coalescent approach to infer historical demographic parameters of divergence, and examine gene flow and population structure using microsatellite variation. We find that colour variation evolved without geographic isolation and in the face of gene flow, consistent with strong divergent selection and that both ecological and sexual selection are implicated. However, we find no significant differentiation at microsatellite loci across populations, suggesting little reproductive isolation and high levels of contemporary gene exchange. Strong divergent selection on loci affecting coloration probably maintains clinal phenotypic variation despite high gene flow at neutral loci, supporting the notion of a porous genome in which adaptive portions of the genome remain fixed whereas neutral portions are homogenized by gene flow and recombination. We discuss the impact of these findings for studies of colour evolution and ecological speciation.  相似文献   

9.
When two species are incompletely isolated, strengthening premating isolation barriers in response to the production of low fitness hybrids may complete the speciation process. Here, we use the sister species Drosophila subquinaria and Drosophila recens to study the conditions under which this reinforcement of species boundaries occurs in natural populations. We first extend the region of known sympatry between these species, and then we conduct a fine‐scale geographic survey of mate discrimination coupled with estimates of gene flow within and admixture between species. Within D. subquinaria, reinforcement is extremely effective: we find variation in mate discrimination both against D. recens males and against conspecific allopatric males on the scale of a few kilometres and in the face of gene flow both from conspecific populations and introgression from D. recens. In D. recens, we do not find evidence for increased mate discrimination in sympatry, even where D. recens is rare, consistent with substantial gene flow throughout the species’ range. Finally, we find that introgression between species is asymmetric, with more from D. recens into D. subquinaria than vice versa. Within each species, admixture is highest in the geographic region where it is rare relative to the other species, suggesting that when hybrids are produced they are of low fitness. In sum, reinforcement within D. subquinaria is effective at maintaining species boundaries, but even when reinforcing selection is strong it may not always result in a pattern of strong reproductive character displacement due to variation in the frequency of hybridization and gene flow from neighbouring populations.  相似文献   

10.
The spatial subdivision of species often plays a pivotal role in speciation. Across their entire range, species are rarely panmictic and crucial consequences of spatial subdivision are (1) random genetic drift including historical factors, (2) uniform selection, and (3) divergent selection. Each of these consequences may result in geographic variation and eventually reproductive isolation, but their relative importance in speciation is still unclear. In this study, we used a combination of genetic, morphological, and climatic data to obtain a comprehensive picture of differentiation among three closely related, parapatrically distributed taxa of the land snail genus Theba occurring along the Atlantic coasts of South Morocco and Western Sahara. We conducted Mantel and partial Mantel tests to relate phenotypic and genotypic variation of these species to geography and/or climate. As null hypothesis for an evolutionary scenario, we assumed nonadaptive speciation and expected a pattern of isolation by distance among taxa. Rejection of the null hypothesis would indicate isolation by environment due to adaptation. Generally, genetic drift plays an important role but is rarely considered as sole driver of speciation. It is the combination of drift and selection that predominantly drives speciation. This study, however, provides a potential example, in which nonadaptive speciation, that is, genetic drift, is apparently the main driver of shaping the diversity of Theba in NW Africa. Restriction of gene flow between populations caused by geographic isolation probably has played an important role. Climate oscillations during the Plio‐ and Pleistocene may have led to repeated ecological changes in NW Africa and disruptions of habitats promoting differentiation by geographic isolation. The inferred evolutionary scenario, however, did not fully explain the incongruence between the AFLP‐ and mtDNA‐tree topologies. This incongruence might indicate past hybridization among the studied Theba forms.  相似文献   

11.
Most global hotspots of biodiversity and endemism are in montane regions. One explanation is that montane regions have intrinsically higher speciation rates than lowland regions because complex mountain topography and climate variation facilitate genetic isolation among populations. Here, we ask from an intraspecific perspective whether frog species whose haplotypes are connected by topographically/climatically complex regions display strong genetic isolation (greater scaled genetic distances), compared with species whose haplotypes are connected by less complex regions. We analysed published DNA sequences of several frog species from tropical Central and South America for the mitochondrial cob, cox1 and 16S rRNA genes. Pairwise genetic distances among haplotypes within each species were scaled to the geographic distances between each pair of haplotypes. Topographic complexity was positively correlated with scaled genetic distances, and isolation‐by‐resistance was supported only in species from more topographically complex regions. This suggests that heterogeneous topographies increase landscape resistance, which in turn favours the appearance of isolation‐by‐resistance. Moreover, we found that the potential barriers that restrict gene flow within species are more closely related to factors associated with temperature and topography than to precipitation.  相似文献   

12.
Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species‐tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation‐with‐migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene‐ and species‐based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus.  相似文献   

13.
Genome divergence is greatly influenced by gene flow during early stages of speciation. As populations differentiate, geographic barriers can constrain gene flow and so affect the dynamics of divergence and speciation. Current geography, specifically disjunction and continuity of ranges, is often used to predict the historical gene flow during the divergence process. We test this prediction in eight meliphagoid bird species complexes codistributed in four regions. These regions are separated by known biogeographical barriers across northern Australia and Papua New Guinea. We find that bird populations currently separated by terrestrial habitat barriers within Australia and marine barriers between Australia and Papua New Guinea have a range of divergence levels and probability of gene flow not associated with current range connectivity. Instead, geographic distance and historical range connectivity better predict divergence and probability of gene flow. In this dynamic environmental context, we also find support for a nonlinear decrease of the probability of gene flow during the divergence process. The probability of gene flow initially decreases gradually after a certain level of divergence is reached. Its decrease then accelerates until the probability is close to zero. This implies that although geographic connectivity may have more of an effect early in speciation, other factors associated with higher divergence may play a more important role in influencing gene flow midway through and later in speciation. Current geographic connectivity may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.  相似文献   

14.
Lee YH  Lin CP 《Molecular ecology》2012,21(15):3739-3756
Climatic oscillations during the Pleistocene period could have had a profound impact on the origin of tropical species by the alternation of allopatric isolation and interpopulation gene flow cycles. However, whether tropical speciation involves strictly allopatric isolation, or proceeds in the face of homogenizing gene flow, is relatively unclear. Here, we investigated geographical modes of speciation in four closely related Euphaea damselfly species endemic to the subtropical and tropical East Asian islands using coalescent analyses of a multilocus data set. The reconstructed phylogenies demonstrated distinct species status for each of the four species and the existence of two sister species pairs, Euphaea formosa/E. yayeyamana and E. decorata/E. ornata. The species divergence time of the sibling Euphaea damselflies dates back to within the last one Mya of the Middle to Lower Pleistocene. The speciation between the populous E. formosa of Taiwan and the less numerous E. yayeyamana of the Yaeyama islands occurred despite significant bidirectional, asymmetric gene flow, which is strongly inconsistent with a strictly allopatric model. In contrast, speciation of the approximately equal-sized populations of E. decorata of the southeast Asian mainland and E. ornata of Hainan is inferred to have involved allopatric divergence without gene flow. Our findings suggest that differential selection of natural or sexual environments is a prominent driver of species divergence in subtropical E. formosa and E. yayeyamana; whereas for tropical E. decorata and E. ornata at lower latitudes, allopatric isolation may well be a pivotal promoter of species formation.  相似文献   

15.
Allozymic variation at 21-23 loci was studied in 28 populations of Talitrus saltator, 23 populations of Orchestia montagui, 13 populations of O. stephenseni, and five populations of Platorchestia platensis from the Mediterranean Basin. Different levels of gene flow (Nmtheta) were detected within each species at the scale of the whole Mediterranean: O. montagui and P. platensis had low population structure, with levels of Nmtheta > or = 1, whereas the T. saltator and 0. stephenseni populations have values of Nmtheta < 1. The relationship between Nmtheta and geographic distance was analyzed to test for the presence of an isolation by distance pattern in the spatial genetic variation within each species. A model of isolation by distance is useful to describe the pattern of genetic structuring of study species at the scale of the whole Mediterranean: geographic distance explained from 28% to 70% of the variation in gene flow. In the Aegean area all species showed an island model of genetic structuring regardless of the levels of gene flow.  相似文献   

16.
Aim To test hypotheses that: (1) late Pleistocene low sea‐level shorelines (rather than current shorelines) define patterns of genetic variation among mammals on oceanic Philippine islands; (2) species‐specific ecological attributes, especially forest fidelity and vagility, determine the extent to which common genetic patterns are exhibited among a set of species; (3) populations show reduced within‐population variation on small, isolated oceanic islands; (4) populations tend to be most highly differentiated on small, isolated islands; and (5) to assess the extent to which patterns of genetic differentiation among multiple species are determined by interactions of ecological traits and geological/geographic conditions. Location The Philippine Islands, a large group of oceanic islands in Southeast (SE) Asia with unusually high levels of endemism among mammals. Methods Starch‐gel electrophoresis of protein allozymes of six species of small fruit bats (Chiroptera, Pteropodidae) and one rodent (Rodentia, Muridae). Results Genetic distances between populations within all species are not correlated with distances between present‐day shorelines, but are positively correlated with distances between shorelines during the last Pleistocene period of low sea level; relatively little intraspecific variation was found within these ‘Pleistocene islands’. Island area and isolation of oceanic populations have only slight effects on standing genetic variation within populations, but populations on some isolated islands have heightened levels of genetic differentiation, and reduced levels of gene flow, relative to other islands. Species associated with disturbed habitat (all of which fly readily across open habitats) show more genetic variation within populations than species associated with primary rain forest (all of which avoid flying out from beneath forest canopy). Species associated with disturbed habitats, which tend to be widely distributed in SE Asia, also show higher rates of gene flow and less differentiation between populations than species associated with rain forest, which tend to be Philippine endemic species. One rain forest bat has levels of gene flow and heterozygosity similar to the forest‐living rodent in our study. Main conclusions The maximum limits of Philippine islands that were reached during Pleistocene periods of low sea level define areas of relative genetic homogeneity, whereas even narrow sea channels between adjacent but permanently isolated oceanic islands are associated with most genetic variation within the species. Moreover, the distance between ‘Pleistocene islands’ is correlated with the extent of genetic distances within species. The structure of genetic variation is strongly influenced by the ecology of the species, predominantly as a result of their varying levels of vagility and ability to tolerate open (non‐forested) habitat. Readily available information on ecology (habitat association and vagility) and geological circumstances (presence or absence of Pleistocene land‐bridges between islands, and distance between oceanic islands during periods of low sea level) are combined to produce a simple predictive model of likely patterns of genetic differentiation (and hence speciation) among these mammals, and probably among other organisms, in oceanic archipelagos.  相似文献   

17.
The percentage of single island neo-endemic species (an indicator for evolutionary diversification) was found to be independent of geographic distance to the continent in the case of the Aegean archipelago. It was concluded that speciation is independent of geographic isolation, while evolutionary processes are rather enhanced by habitat heterogeneity. An island's maximum elevation was used as an indicator for habitat heterogeneity. In contrast, we argue that habitat heterogeneity (= habitat diversity, i.e. the richness in different habitats) may be positively related to biotic richness, but a positive effect on speciation is yet to be proven. For any other type of heterogeneity, we propose a precise wording, especially when assessing its effect on speciation processes.Alternatively, we propose that elevation-driven ecological isolation causes the pattern of endemic species on high-elevation islands. Environmental filtering along an elevational gradient differentiates ecosystems, leading to an increase of isolation with elevation. The reason is that comparable ecosystems are much farther apart than is the case for lowland ecosystems. In addition, ecosystems on neighboring islands or on the continent that may be source regions for colonizing species are small in area in high elevations in comparison with low elevation ecosystems. Consequently, an increased speciation rate resulting in a larger percentage of single island endemic species can be expected for higher elevations on islands and high mountains. Support for this elevation-driven ecological isolation hypothesis comes from other islands in the Mediterranean region (e.g. Crete and Corsica), where an increase of the percentage of endemic species with elevation has been observed. Thus, the assessment of (genetic-) isolation should incorporate the distance to similar habitats instead of simple land-to-land connections.  相似文献   

18.
“Sky island” species diversification contributes greatly to mountainous biodiversity. However, the underlying genomic divergence and the inferred drivers remain largely unknown. In this study, we examined the diversification history of five diploid species with three exclusively endemic to the sky islands (mountains) of the Himalaya–Hengduan Mountains biodiversity hotspot. All of them together comprise a clade of the genus Eutrema (Brassicaceae). We resequenced genomes of multiple individuals of the found populations for each species. We recovered the inconsistent phylogenetic relationships between plastome and nuclear‐genome trees for one species. Based on nuclear population genomic data, we detected high genetic divergence between five species with limited gene flow. Four species seemed to diverge mainly through geographical isolation, whereas one arose through hybrid origin. The origins of the sampled five species were dated to within the late Miocene when mountains were uplifted and climates oscillated. All species decreased their population sizes since the inferred origin of each species initially, but only two of them expanded after the Last Glacial Maximum. Together, these findings suggest that geographic isolation plays an important role in driving the sky island species diversification of the sampled species in addition to the occasional gene flow that might have led to the hybrid origin of some sky island species, similar to the species diversification of sea islands.  相似文献   

19.
Hypotheses for divergence and speciation in rainforests generally fall into two categories: those emphasizing the role of geographic isolation and those emphasizing the role of divergent selection along gradients. While a majority of studies have attempted to infer mechanisms based on the pattern of species richness and congruence of geographic boundaries, relatively few have tried to simultaneously test alternative hypotheses for diversification. Here we discuss four examples, taken from our work on diversification of tropical rainforest vertebrates, in which we examine patterns of genetic and morphological variation within and between biogeographic regions to address two alternative hypotheses. By estimating morphological divergence between geographically contiguous and isolated populations under similar and different ecological conditions, we attempt to evaluate the relative roles of geographic isolation and natural selection in population divergence. Results suggest that natural selection, even in the presence of appreciable gene flow, can result in morphological divergence that is greater than that found between populations isolated for millions of years and, in some cases, even greater than that found between congeneric, but distinct, species. The relatively small phenotypic divergence that occurs among long-term geographic isolates in similar habitats suggests that morphological divergence via drift may be negligible and/or that selection is acting to produce similar phenotypes in populations occupying similar habitats. Our results demonstrate that significant phenotypic divergence: (1) is not necessarily coupled with divergence in neutral molecular markers; and (2) can occur without geographic isolation in the presence of gene flow.  相似文献   

20.
Long neglected by classic island biogeographical theory, speciation within and among islands is increasingly recognized as a major contributor to insular diversity. Although the factors responsible for island speciation remain poorly understood, this process appears critically dependent on geographical variation and speciation in allopatry or parapatry. Here, we investigate geographical variation and speciation in a complex of Hispaniolan trunk anoles (Anolis distichus), where populations with strikingly distinct dewlap colours and patterns correspond with deeply divergent mtDNA structure. Using a multilocus, population‐level analysis, we investigate whether these phenotypically and mitochondrially distinct populations exhibit the type of nuclear differentiation expected among species or incipient species. Along a transect that extends across a recently recessed marine barrier, our results are consistent with the persistence of an abrupt phenotypic and mitochondrial transition following secondary contact, in spite of little or no evidence for a reduction in nuclear gene flow. Along a second transect extending across a steep environmental gradient, our phenotypic and microsatellite data suggest a sharp genetic break with little or no admixture, whereas mtDNA recovers a signature of extensive unidirectional introgression. Together, these results are consistent with previous studies of Lesser Antillean anoles, suggesting that allopatric divergence alone is insufficient for speciation, whereas reduced gene flow and partial reproductive isolation may accumulate in the presence of ecological gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号