首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin‐8 (IL‐8), as an inflammatory chemokine, has been previously shown to contribute to tumorigenesis in several malignancies including the ovarian cancer. However, little is known about how IL‐8 promotes the metastasis and invasion of ovarian cancers cells. In this study, we found that IL‐8 and its receptors CXCR1 and CXCR2 were up‐regulated in advanced ovarian serous cancer tissues. Furthermore, the level of IL‐8 and its receptors CXCR1 and CXCR2 expression were associated with ovarian cancer stage, grade and lymph node metastasis. In vitro, IL‐8 promoted ovarian cancer cell migration, initiated the epithelial‐mesenchymal transition (EMT) program and activated Wnt/β‐catenin signalling. However, when treated with Reparixin (inhibitor of both IL‐8 receptors CXCR1 and CXCR2), effect of both endogenous and exogenous IL‐8 was reversed. Together, our results indicated that IL‐8 triggered ovarian cancer cells migration partly through Wnt/β‐catenin pathway mediated EMT, and IL‐8 may be an important molecule in the invasion and metastasis of ovarian cancer.  相似文献   

3.
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.  相似文献   

4.
5.
6.
Aberrant expression of Sialyl‐Tn (STn) antigen correlates with poor prognosis and reduced patient survival. We demonstrated that expression of Tn and STn in pancreatic ductal adenocarcinoma (PDAC) is due to hypermethylation of Co re 1 s ynthase specific m olecular c haperone (COSMC) and enhanced the malignant properties of PDAC cells with an unknown mechanism. To explore the mechanism, we have genetically deleted COSMC in PDAC cells to express truncated O‐glycans (SimpleCells, SC) which enhanced cell migration and invasion. Since epithelial‐to‐mesenchymal transition (EMT) play a vital role in metastasis, we have analysed the induction of EMT in SC cells. Expressions of the mesenchymal markers were significantly high in SC cells as compared to WT cells. Equally, we found reduced expressions of the epithelial markers in SC cells. Re‐expression of COSMC in SC cells reversed the induction of EMT. In addition to this, we also observed an increased cancer stem cell population in SC cells. Furthermore, orthotopic implantation of T3M4 SC cells into athymic nude mice resulted in significantly larger tumours and reduced animal survival. Altogether, these results suggest that aberrant expression of truncated O‐glycans in PDAC cells enhances the tumour aggressiveness through the induction of EMT and stemness properties.  相似文献   

7.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

8.
Breast cancer is a heterogeneous disease that varies in its biology and response to therapy. A foremost threat to patients is tumor invasion and metastasis, with the greatest risk among patients diagnosed with triple‐negative and/or basal‐like breast cancers. A greater understanding of the molecular mechanisms underlying cancer cell spreading is needed as 90% of cancer‐associated deaths result from metastasis. We previously demonstrated that the Tamoxifen‐selected, MCF‐7 derivative, TMX2‐28, lacks expression of estrogen receptor α (ERα) and is highly invasive, yet maintains an epithelial morphology. The present study was designed to further characterize TMX2‐28 cells and elucidate their invasion mechanism. We found that TMX2‐28 cells do not express human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR), in addition to lacking ERα, making the cells triple‐negative. We then determined that TMX2‐28 cells lack expression of active matrix metalloproteinases (MMPs)‐1, MMP‐2, MMP‐9, and other genes involved in epithelial–mesenchymal transition (EMT) suggesting that TMX2‐28 may not utilize mesenchymal invasion. In contrast, TMX2‐28 cells have high expression of Ras Homolog Gene Family Member, A (RhoA), a protein known to play a critical role in amoeboid invasion. Blocking RhoA activity with the RhoA pathway specific inhibitor H‐1152, or a RhoA specific siRNA, resulted in inhibition of invasive behavior. Collectively, these results suggest that TMX2‐28 breast cancer cells exploit a RhoA‐dependent, proteolytic‐independent invasion mechanism. Targeting the RhoA pathway in triple‐negative, basal‐like breast cancers that have a proteolytic‐independent invasion mechanism may provide therapeutic strategies for the treatment of patients with increased risk of metastasis. J. Cell. Biochem. 114: 1385–1394, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Alpha B‐crystallin (CRYAB) is overexpressed in a variety of cancers. However, little is known about its specific function and regulatory mechanism in gastric cancer. Here, we first explore the role of CRYAB in gastric cancer progression and metastasis. The expression of CRYAB was determined by western blot and immunohistochemistry in gastric cancer tissues. Besides, methods including stably transfected against CRYAB into gastric cancer cells, western blot, migration and invasion assays in vitro and metastasis assay in vivo were also conducted. The expression of CRYAB is up‐regulated in gastric cancer tissues compared with matched normal tissues. High expression level of CRYAB is closely correlated with cancer metastasis and shorter survival time in patients with gastric cancer. Additionally, CRYAB silencing significantly suppresses epithelial‐mesenchymal transition (EMT), migration and invasion of gastric cancer cells in vitro and in vivo, whereas CRYAB overexpression dramatically reverses these events. Mechanically, CRYAB facilitates gastric cancer cells invasion and metastasis via nuclear factor‐κ‐gene binding (NF‐κB)‐regulated EMT. These findings suggest that CRYAB expression predicts a poor prognosis in patients with gastric cancer. Besides, CRYAB contributes to gastric cancer cells migration and invasion via EMT, mediated by the NF‐κB signalling pathway, thus possibly providing a novel therapeutic target for gastric cancer.  相似文献   

10.
Several microRNAs (miRNAs) have recently been described as crucial regulators of epithelial‐to‐mesenchymal transition (EMT) and metastasis. By comparing the expression profiles of miRNAs, we found upregulation of miR‐29a in mesenchymal, metastatic RasXT cells relative to epithelial EpRas cells. Overexpression of miR‐29a suppressed the expression of tristetraprolin (TTP), a protein involved in the degradation of messenger RNAs with AU‐rich 3′‐untranslated regions, and led to EMT and metastasis in cooperation with oncogenic Ras signalling. We also observed enhanced miR‐29a and reduced TTP levels in breast cancer patient samples, indicating relevance for human disease. Previously, miR‐29 family members were shown to have tumour‐suppressive effects in haematopoietic, cholangiocytic and lung tumours. Therefore, miRNAs can act as either oncogenes or tumour suppressors, depending on the context.  相似文献   

11.
12.
13.
Protein arginine methyltransferase 5 (PRMT5) has been implicated in the development and progression of human cancers. However, few studies reveal its role in epithelial‐mesenchymal transition (EMT) of pancreatic cancer cells. In this study, we find that PRMT5 is up‐regulated in pancreatic cancer, and promotes proliferation, migration and invasion in pancreatic cancer cells, and promotes tumorigenesis. Silencing PRMT5 induces epithelial marker E‐cadherin expression and down‐regulates expression of mesenchymal markers including Vimentin, collagen I and β‐catenin in PaTu8988 and SW1990 cells, whereas ectopic PRMT5 re‐expression partially reverses these changes, indicating that PRMT5 promotes EMT in pancreatic cancer. More importantly, we find that PRMT5 knockdown decreases the phosphorylation level of EGFR at Y1068 and Y1172 and its downstream p‐AKT and p‐GSK3β, and then results in down‐regulation of β‐catenin. Expectedly, ectopic PRMT5 re‐expression also reverses the above changes. It is suggested that PRMT5 promotes EMT probably via EGFR/AKT/β‐catenin pathway. Taken together, our study demonstrates that PRMT5 plays oncogenic roles in the growth of pancreatic cancer cell and provides a potential candidate for pancreatic cancer treatment.  相似文献   

14.
Lung cancer (LC) is a devastating malignancy with no effective treatments, due to its complex genomic profile. Using bioinformatics analysis and immunohistochemical of lung carcinoma tissues, we show that TRIM59 as a critical oncoprotein relating to LC proliferation and metastasis. In this study, high TRIM59 expression was significantly correlated with lymph node metastasis, distant metastasis, and tumour stage. Furthermore, up‐regulation of TRIM59 expression correlated with poorer outcomes in LC patients. Mechanistically, TRIM59 play a key role in promoting LC growth and metastasis through regulation of extracellular‐signal regulated protein kinase (ERK) signalling pathway and epithelial‐to‐mesenchymal transition (EMT)‐markers, as validated by loss‐of‐function studies. In‐depth bioinformatics analysis showed that there is preliminary evidence of co‐expression of TRIM59 and cyclin dependent kinase 6 (CDK6) in LC. Notably, CDK6 expression significantly decreased when TRIM59 was knocked down in the LC cells. In contrast, exogenous up‐regulation of TRIM59 expression also induced significant increases in the expression of CDK6. Moreover, the expression of CDK6 was also inhibited by the ERK signalling inhibitor, U0126. The results of both loss‐ and gain‐of‐function studies showed that TRIM59 could regulate the expression of CDK6. Collectively, these data provide evidence that TRIM59 is involved in lung carcinoma growth and progression possibly through the induction of CDK6 expression and EMT process by activation of ERK pathway.  相似文献   

15.
Epithelial-mesenchymal transition (EMT) is important for organ development, metastasis, cancer stemness, and organ fibrosis. Molecular mechanisms to coordinately regulate hypoxia-induced EMT remain elusive. Here, we show that HIF-1α-induced histone deacetylase 3 (hdac3) is essential for hypoxia-induced EMT and metastatic phenotypes. Change of specific chromatin states is associated with hypoxia-induced EMT. Under hypoxia, HDAC3 interacts with hypoxia-induced WDR5, recruits the histone methyltransferase (HMT) complex to increase histone H3 lysine 4 (H3K4)-specific HMT activity, and activates mesenchymal gene expression. HDAC3 also serves as an essential corepressor to repress epithelial gene expression. Knockdown of WDR5 abolishes mesenchymal gene activation but not epithelial gene repression during hypoxia. These results indicate that hypoxia induces different chromatin modifiers?to?coordinately regulate EMT through distinct mechanisms.  相似文献   

16.
17.
18.
Triple‐negative breast cancer (TNBC) is a highly aggressive breast cancer subtype that lacks effective targeted therapies. The epithelial‐to‐mesenchymal transition (EMT) is a key contributor in the metastatic process. In this study, we found that miR‐655 was down‐regulated in TNBC, and its expression levels were associated with molecular‐based classification and lymph node metastasis in breast cancer. These findings led us to hypothesize that miR‐655 overexpression may inhibit EMT and its associated traits of TNBC. Ectopic expression of miR‐655 not only induced the up‐regulation of cytokeratin and decreased vimentin expression but also suppressed migration and invasion of mesenchymal‐like cancer cells accompanied by a morphological shift towards the epithelial phenotype. In addition, we found that miR‐655 was negatively correlated with Prrx1 in cell lines and clinical samples. Overexpression of miR‐655 significantly suppressed Prrx1, as demonstrated by Prrx1 3′‐untranslated region luciferase report assay. Our study demonstrated that miR‐655 inhibits the acquisition of the EMT phenotype in TNBC by down‐regulating Prrx1, thereby inhibiting cell migration and invasion during cancer progression.  相似文献   

19.
Myelocytomatosis oncogene (c‐MYC) is a well‐known nuclear oncoprotein having multiple functions in cell proliferation, apoptosis and cellular transformation. Chromosomal modification is also important to the differentiation and growth of stem cells. Histone deacethylase (HDAC) and polycomb group (PcG) family genes are well‐known chromosomal modification genes. The aim of this study was to elucidate the role of c‐MYC in the expression of chromosomal modification via the HDAC family genes in human mesenchymal stem cells (hMSCs). To achieve this goal, c‐MYC expression was modified by gene knockdown and overexpression via lentivirus vector. Using the modified c‐MYC expression, our study was focused on cell proliferation, differentiation and cell cycle. Furthermore, the relationship of c‐MYC with HDAC2 and PcG genes was also examined. The cell proliferation and differentiation were checked and shown to be dramatically decreased in c‐MYC knocked‐down human umbilical cord blood‐derived MSCs, whereas they were increased in c‐MYC overexpressing cells. Similarly, RT‐PCR and Western blotting results revealed that HDAC2 expression was decreased in c‐MYC knocked‐down and increased in c‐MYC overexpressing hMSCs. Database indicates presence of c‐MYC binding motif in HDAC2 promoter region, which was confirmed by chromatin immunoprecipitation assay. The influence of c‐MYC and HDAC2 on PcG expression was confirmed. This might indicate the regulatory role of c‐MYC over HDAC2 and PcG genes. c‐MYCs’ regulatory role over HDAC2 was also confirmed in human adipose tissue‐derived MSCs and bone‐marrow derived MSCs. From this finding, it can be concluded that c‐MYC plays a vital role in cell proliferation and differentiation via chromosomal modification.  相似文献   

20.
Lipase member H (LIPH), a novel member of the triglyceride lipase family. The clinical implications of its expression in breast cancer are still unclear. Therefore, in this study, we investigated the associations between LIPH and the tumorigenic behaviours of 144 triple‐negative breast cancer (TNBC) patients. The ratio and mammosphere‐forming ability of CD44+/CD24? stem‐like cells were tested. The role of LIPH in breast cancer cell migration and invasion was also evaluated. In addition, the effect of LIPH silencing on mitochondrial respiration was determined using the Seahorse assay. Finally, the effect of LIPH silencing on protein expression was determined via tandem mass tag‐based spectrometry and Western blotting. We found that LIPH expression was associated with metastasis in lymph nodes and distant organs (P = 0.025), resulting in poor survival among breast cancer patients (P = 0.027). LIPH knockdown significantly decreased both the ratio of CD44+/CD24? stem‐like cells and their mammosphere‐forming ability. LIPH silencing promoted apoptosis, arrested cell cycle in the G2/M phase, mitigated the oxidation‐related oxygen consumption rate in the mitochondria, and reduced metabolism. LIPH inhibited adhesion between tumour cells and enhanced the epithelial‐mesenchymal transition. Tandem mass spectrometric analysis presented 68 proteins were differentially expressed in LIPH‐silenced cells and LIPH‐mediated modulation of tumour cell adhesion depended on integrin‐related CAPN2 and paxillin signalling. Overall, our findings provided strong evidence that LIPH up‐regulation promoted metastasis and the stemness of TNBC cells. Therefore, targeting LIPH is a potentially viable strategy for preventing metastasis in TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号