首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
极管蛋白(Polar tube protein)是极管的主要成分,能特异性定位于微孢子虫极管,在微孢子虫侵染宿主过程中发挥重要作用。文中分析了家蚕微孢子虫极管蛋白1中潜在的O-、N-糖基化修饰位点,克隆了家蚕微孢子虫极管蛋白1全基因序列,并将其插入带有V5和His标签的真核表达载体pMT/Bip/V5-His A中,成功构建了pMT/Bip/V5-His A-NbPTP1重组质粒,经转染果蝇S2细胞后,发现NbPTP1基因能在果蝇细胞中高效表达。此外,Lectin blotting和β-消除反应分析结果表明:果蝇S2细胞内表达的NbPTP1具有O-糖基化修饰特征。以上结果为研究NbPTP1的糖基化修饰特征与其功能之间的关系提供了基础,有助于揭示微孢子虫侵染机制,建立可行有效的微孢子虫病诊断和防治措施。  相似文献   

2.
As a common feature of eukaryotic proteins, tandem amino acid repeat has been studied extensively in both animal and plant proteins. Here, a comparative analysis focusing on the proteins having tandem repeats was conducted in eight microsporidia, including four mammal‐infecting microsporidia (Encephalitozoon cuniculi, Encephalitozoon intestinalis, Encephalitozoon hellem and Encephalitozoon bieneusi) and four insect‐infecting microsporidia (Nosema apis, Nosema ceranae, Vavraia culicis and Nosema bombycis). We found that the proteins with tandem repeats were abundant in these species. The quantity of these proteins in insect‐infecting microsporidia was larger than that of mammal‐infecting microsporidia. Additionally, the hydrophilic residues were overrepresented in the tandem repeats of these eight microsporidian proteins and the amino acids residues in these tandem repeat sequences tend to be encoded by GC‐rich codons. The tandem repeat position within proteins of insect‐infecting microsporidia was randomly distributed, whereas the tandem repeats within proteins of mammal‐infecting microsporidia rarely tend to be present in the N terminal regions, when compared with those present in the C terminal and middle regions. Finally, a hypothetical protein EOB14572 possessing four tandem repeats was successfully characterized as a novel endospore wall protein, which colocalized with polar tube of N. bombycis. Our study provided useful insight for the study of the proteins with tandem repeats in N. bombycis, but also further enriched the spore wall components of this obligate unicellular eukaryotic parasite.  相似文献   

3.
Miniature inverted-repeat transposable elements (MITEs) are short, non-autonomous DNA transposons, which are widespread in most eukaryotic genomes. However, genome-wide identification, origin and evolution of MITEs remain largely obscure in microsporidia. In this study, we investigated structural features for de novo identification of MITEs in genomes of silkworm microsporidia Nosema bombycis and Nosema antheraeae, as well as a honeybee microsporidia Nosema ceranae. A total of 1490, 149 and 83 MITE-related sequences from 89, 17 and five families, respectively, were found in the genomes of the above-mentioned species. Species-specific MITEs are predominant in each genome of microsporidian Nosema, with the exception of three MITE families that were shared by N. bombycis and N. antheraeae. One or multiple rounds of amplification occurred for MITEs in N. bombycis after divergence between N. bombycis and the other two species, suggesting that the more abundant families in N. bombycis could be attributed to the recent amplification of new MITEs. Significantly, some MITEs that inserted into the homologous protein-coding region of N. bombycis were recruited as introns, indicating that gene expansion occurred during the evolution of microsporidia. NbS31 and NbS24 had polymorphisms in different geographical strains of N. bombycis, indicating that they could still be active. In addition, several small RNAs in the MITEs in N. bombycis are mainly produced from both ends of the MITEs sequence.  相似文献   

4.
The microsporidia Nosema bombycis is the insect pathogen of pebrine disease severely destructive to sericulture production. Here, we describe the use of Escherichia coli HT115 strain (DE3) to express double‐strand RNAs targeting the gene encoding ADP/ATP protein in N. bombycis. The results showed that dsRNAs deferentially suppressed the gene expression during N. bombycis infection in the silkworm, and the effect waned gradually. Our results, for the first time, provide a tool to utilize the dsRNA expressed by recombinant E. coli to control the pebrine disease of the domestic silkworm.  相似文献   

5.
Biological tests demonstrated that the inactivation of Nosema bombycis (N. bombycis) spores by chlorine dioxide (ClO2) occurs very fast and is highly sensitive. The lowest effective inactivation dosage and time was 15 mg/mL for 30 min. The inactivation of spores was additionally verified by using double color fluorescence stain and spore germination testing. A series of biological changes, including a large number of substrates that were leaked out from the spores included proteins, DNA, polysaccharide, K+, and Ca2+, occurred a short time after N. bombycis spores were treated with ClO2. In addition, the lipid of spores was disrupted and ATPase activity was inhibited, which resulted in the destruction of the inner structure of the spores.  相似文献   

6.
Microsporidia have attracted much attention because they infect a variety of species ranging from protists to mammals, including immunocompromised patients with AIDS or cancer. Aside from the study on Nosema ceranae, few works have focused on elucidating the mechanism in host response to microsporidia infection. Nosema bombycis is a pathogen of silkworm pébrine that causes great economic losses to the silkworm industry. Detailed understanding of the host (Bombyx mori) response to infection by N. bombycis is helpful for prevention of this disease. A genome-wide survey of the gene expression profile at 2, 4, 6 and 8 days post-infection by N. bombycis was performed and results showed that 64, 244, 1,328, 1,887 genes were induced, respectively. Up to 124 genes, which are involved in basal metabolism pathways, were modulated. Notably, B. mori genes that play a role in juvenile hormone synthesis and metabolism pathways were induced, suggesting that the host may accumulate JH as a response to infection. Interestingly, N. bombycis can inhibit the silkworm serine protease cascade melanization pathway in hemolymph, which may be due to the secretion of serpins in the microsporidia. N. bombycis also induced up-regulation of several cellular immune factors, in which CTL11 has been suggested to be involved in both spore recognition and immune signal transduction. Microarray and real-time PCR analysis indicated the activation of silkworm Toll and JAK/STAT pathways. The notable up-regulation of antimicrobial peptides, including gloverins, lebocins and moricins, strongly indicated that antimicrobial peptide defense mechanisms were triggered to resist the invasive microsporidia. An analysis of N. bombycis-specific response factors suggested their important roles in anti-microsporidia defense. Overall, this study primarily provides insight into the potential molecular mechanisms for the host-parasite interaction between B. mori and N. bombycis and may provide a foundation for further work on host-parasite interaction between insects and microsporidia.  相似文献   

7.
In order to evaluate the potential application of microsporidia as a microbial control agent against lepidopteran insect pests, microsporidian infection in a field population of the common cutworm, Spodoptera litura (Fabricius), was surveyed in vegetable crop fields in Can Tho City, Vietnam, in March 2007. The infection rate of microsporidia was 46.7% (99/212 individuals) in adult S. litura, and 16 samples of infected adults were used to characterize the microsporidia at the molecular level. Analysis of the small subunit ribosomal RNA (SSU rRNA) sequences indicated that microsporidian strains isolated from S. litura were closely related to Nosema bombycis from the silkworm, Bombyx mori (Linnaeus); however, phylogenetic analysis based on genome profiling produced a different result from the SSU rRNA sequences. Temperature gradient gel electrophoresis profiles of 12 microsporidian strains from S. litura were closely related to N. bombycis strains, while the profiles of three microsporidian strains formed a different cluster. The Vietnamese strains did not form a single group, but were classified into at least three groups. These results suggested that the microsporidia isolated from S. litura in the Mekong Delta, Vietnam, are genetically diverse.  相似文献   

8.
Li Z  Pan G  Li T  Huang W  Chen J  Geng L  Yang D  Wang L  Zhou Z 《Eukaryotic cell》2012,11(2):229-237
Microsporidia are a group of eukaryotic intracellular parasites that infect almost all vertebrates and invertebrates. The microsporidian invasion process involves the extrusion of a unique polar tube into host cells. Both the spore wall and the polar tube play an important role in microsporidian pathogenesis. So far, five spore wall proteins (SWP1, SWP2, Enp1, Enp2, and EcCDA) from Encephalitozoon intestinalis and Encephalitozoon cuniculi and five spore wall proteins (SWP32, SWP30, SWP26, SWP25, and NbSWP5) from the silkworm pathogen Nosema bombycis have been identified. Here we report the identification and characterization of a spore wall protein (SWP5) with a molecular mass of 20.3 kDa in N. bombycis. This protein has low sequence similarity to other eukaryotic proteins. Immunolocalization analysis showed SWP5 localized to the exospore and the region of the polar tube in mature spores. Immunoprecipitation, mass spectrometry, and immunofluorescence analyses revealed that SWP5 interacts with the polar tube proteins PTP2 and PTP3. Anti-SWP5 serum pretreatment of mature spores significantly decreased their polar tube extrusion rate. Taken together, our results show that SWP5 is a spore wall protein localized to the spore wall and that it interacts with the polar tube, may play an important role in supporting the structural integrity of the spore wall, and potentially modulates the course of infection of N. bombycis.  相似文献   

9.
Six novel families of miniature inverted-repeat transposable elements (MITEs) were characterized in the microsporidia Nosema bombycis and were named NbMEs. The structural characteristics and the distribution of NbME copies in the N. bombycis genome were investigated, and it was found that portions of NbMEs are associated with gene sections. Potential molecular markers for various N. bombycis strains were identified in this study through utilization of the MITE-AFLP technique. Three distinct pathogenic isolates collected from different areas were distinguished, and polymorphisms were detected using the NbME5 marker, thereby establishing this NbME as a potential marker for studying isolate variation in N. bombycis.  相似文献   

10.
ABSTRACT. Microsporidia are eukaryotic, obligate intracellular, spore-forming parasites. The resistant spores, which harbor a rigid cell wall, are critical for their host-to-host transmission and persistence in the environment. The spore wall comprises two major layers: the exospore and the endospore. In Nosema bombycis, two spore wall proteins have been characterized—an endosporal protein, SWP30, and an exosporal protein, SWP32. Here, we report the identification of the third spore wall protein of N. bombycis, SWP25, the gene of which has no known homologue. SWP25 is predicted to posses a signal peptide and a heparin-binding motif. Immunoelectron microscopy analysis showed that this protein is localized to the endospore. This characterization of a new spore wall protein of N. bombycis may facilitate our investigation of the relationship between N. bombycis and its host, Bombyx mori.  相似文献   

11.
ABSTRACT. Spinal and cranial ganglia of American angler fish, Lophius americanus, are often infected with microsporidia. This protozoon elicits the formation of large, spore-filled, hypertrophied host cells, cysts. Previous reports of microsporidia in European lophiids identify the parasite as Spraguea lophii, a genus which has recently been shown to be dimorphic. The spores from L. americanus are monomorphic (2.8 × 1.5 μm) and uninucleate. Each spore contains a polar tube that forms six to nine coils. Spraguea lophii differs from the microsporidium described in L. americanus in several ways. Spraguea lophii has two spore types: a large spore (4.0 × 1.25 μm) containing a diplokaryon and three to four polar tube coils and a smaller uninucleate spore (3.5 × 1.5 μm) with five to six polar tube coils. Because of these major differences, the microsporidium from L. americanus is removed from the genus Spraguea and returned to its original genus, Glugea, as a new species, G. americanus n. sp. Other ultrastructural characteristics of G. americanus are included: the posterior vacuole encloses two distinct membranous structures; one is tubular and resembles a “glomerular tuft” and the second is lamellar and composed of concentric membrane whorls, additionally, the straight or manubroid portion of the polar tube proceeds beyond the posterior vacuole before it turns anteriorly and begins to coil.  相似文献   

12.
Nosema bombycis, two Nosema spp., and a Pleistophora sp. were propagated in the silkworm and the fine structures of their spores were studied. The morphology of the polaroplast, the appearance of the nucleus, and the number of coils in the polar filament differed among the spores of the four species. The spores of the three Nosema species, however, had several identical components; e.g., the polaroplast was made up of two parts, they had two nuclei, and the ribosome arrangement was similar. On the other hand, the spore of Pleistophora sp. had a polaroplast composed of three parts, a single nucleus, and ribosomes arranged around the polar filament. Thus the fine structures of the spore differentiate microsporidan species.  相似文献   

13.
14.
Microsporidia are obligate intracellular parasites related to fungi with resistant spores against various environmental stresses. The rigid spore walls of these organisms are composed of two major layers, which are the exospore and the endospore. Two spore wall proteins (the endosporal protein-SWP30 and the exosporal protein-SWP32) have been previously identified in Nosema bombycis. In this study, using the MALDI-TOF-MS technique, we have characterised a new 25.7-kDa spore wall protein (SWP26) recognised by monoclonal antibody 2G10. SWP26 is predicted to have a signal peptide, four potential N-glycosylation sites, and a C-terminal heparin-binding motif (HBM) which is known to interact with extracellular glycosaminoglycans. By using a host cell binding assay, recombinant SWP26 protein (rSWP26) can inhibit spore adherence by 10%, resulting in decreased host cell infection. In contrast, the mutant rSWP26 (rΔSWP26, without HBM) was not effective in inhibiting spore adherence. Immuno-electron microscopy revealed that this protein was expressed largely in endospore and plasma membrane during endospore development, but sparsely distributed in the exospore of mature spores. The present results suggest that SWP26 is a microsporidia cell wall protein that is involved in endospore formation, host cell adherence and infection in vitro. Moreover, SWP26 could be used as a good prospective target for diagnostic research and drug design in controlling the silkworm, Bombyx mori, pebrine disease in sericulture.  相似文献   

15.
Spores of Nosema bombycis derived from diseased insects were highly purified by Urografin density gradient centrifugation. Antheraea eucalypti cells were inoculated with the purified spores primed with 0.1 n KOH solution to start a continuous propagation of N. bombycis in cell culture. The first increase in the number of infected A. eucalypti cells was observed at 48 hr postinoculation, and it was caused by the secondary infective forms of N. bombycis. The secondary infective forms were produced during the course of sporoblast differentiation. The parasites in cell cultures divided synchronously until 36 hr postinoculation. Mature spores were observed initially 6 days postinoculation at 27°C. The infected cultures were subcultured extensively for more than 1 year with the addition of healthy A. eucalypti cells.  相似文献   

16.
Spore surface antigens of strains of Nosema bombycis were extracted with alkaline solutions and used in an indirect enzyme-linked immunosorbent assay. Treatment of N. bombycis spores with 0.1 n potassium carbonate or potassium hydroxide solution at 27°C for 30 min was sufficient for the extraction of the antigens. Usually, 108 spores of N. bombycis liberated ca. 30 μg spore surface proteins. The indirect enzyme-linked immunosorbent assay detected as little as 60 ng of spore surface proteins (ca. 2000 spore-equivalent antigen). The alkali-soluble spore surface antigens of N. bombycis contained a specific antigen and were stable under storage at −20°C for more than 1 year. The serological assay separated the Nosema isolates pathogenic to the silkworm into three groups.  相似文献   

17.
Microsporidian intrasporal sugars and their role in germination   总被引:5,自引:0,他引:5  
The hypothesis that spores of terrestrial and aquatic microsporidia differ in their utilization of sugars was tested by evaluating the sugars in germinated and ungerminated spores of several species in each category. The aquatic species tested were Vavraia culicis, Edhazardia aedis, and Nosema algerae and the terrestrial species were Vairimorpha necatrix, Nosema disstriae, Nosema apis, Vairimorpha lymantriae, and Nosema spp. from Spodoptera exigua and Plutella xylostella. The percentage germination varied between species, ranging between 40 and 92%. Total sugars (anthrone reactive) and reducing sugars (Nelson's test) remained unchanged through germination in the three terrestrial species tested; however, reducing sugars increased significantly in the aquatic species. High-performance liquid chromatography and gas chromatography revealed a preponderance of trehalose in all species and large quantities of sorbitol in all species except N. algerae and E. aedis. Other sugars were present in some species in much lower concentrations. After germination no changes in sugar content were observed in terrestrial species; however, all aquatic species lost trehalose with a concomitant increase in fructose and/or glucose concentrations. Increased osmotic potential from breakdown of trehalose has been postulated to induce germination of the aquatic species, but another explanation must be found for the terrestrial species.  相似文献   

18.
RESUME. La Microsporidie Nosema bombycis, Protozoaire parasite agent de la pébrine du ver à soie, a étéétudiée cytochimiquement à la fois en microscopie photonique et électronique. Les examens ont porté sur la détection et la localisation des acides nucléiques (ADN et ARN), des polysaccharides, de la phosphatase acide, au cours des différents stades du développement dans les cellules de I'hôte (du schizonte à la spore). Les principaux résultats concernent les observations relatives aux polysaccharides et à la phosphatase qui ne sont détectés qu'au stade de la spore et ne sont pas observés au stade du schizonte. Les polysaccharides sont présents au niveau du sac polaire, du filament polaire et sur la membrane cytoplasmique; la phosphatase acide est localisée au niveau du sac polaire, du filament polaire et dans la vacuole postérieure. SYNOPSIS. Nosema bombycis, agent of pebrine disease of silkworm, was studied cytochemically, using both light and electron microscopy. Presence of nucleic acids (DNA and RNA), polysaccharides, and acid phosphatases was demonstrated and localization of these substances was determined in various stages of the parasite (from the schizont to the spore). DNA and RNA were detected in all these stages. Polysaccharides and acid phosphatase were found in the spore but not in the schizogonic stages. Polysaccharides were detected in the polar cap, the polar filament, and the limiting membrane of the cytoplasm of the spore. Acid phosphatase was found in the polar cap, the polar filament, and the posterior vacuole.  相似文献   

19.
The fine structure of the plasma membrane in spores of the microsporidium Nosema algerae, a pathogen of mosquitoes, was examined in the resting condition and after the spores were stimulated to germinate in vitro. Slow penetration of resin caused collapse of the germinated spores. Thin sections of germinated spores showed peculiar membrane infoldings that were never found in ungerminated samples. Analogous germination-dependent configurations of the plasma membrane were observed in freeze-fractured preparations of spores either fixed and impregnated with glycerol prior to freezing, or rapidly frozen with liquid propane while in the process of germination. In every case, the replicas presented germinated spores with indentations in the protoplasmic face of the plasma membrane, and apparently complementary blunt spines on the external face, that were absent in ungerminated spores. It suggests that these alterations of the plasma membrane result from a structural adjustment to a spontaneous contraction of the spore case after germination. We discuss this interpretation with regard to conflicting views on the nature of such morphological features.  相似文献   

20.
In order to characterize the genome of Nosema bombycis, the techniques of karyotyping, pulsed field gel electrophoresis, and polymerase chain reaction were applied. Nosema genomic DNA moved as 23 kb fragment on a standard agarose gel. The karyotype showed four chromosomes, the molecular karyotyping by pulsed field gel electrophoresis also showed four chromosomes. Arbitrarily primed polymerase chain reaction (PCR) with various primers showed amplification products of sizes ranging from 1.6 to 0.15 kb. Polymerase chain reaction with specific primer showed an amplification product of approximately 315 nucleotides. The DNA hybridizations are discussed. This is the first report of its kind on microsporidian Nosema bombycis. The current data can play a major role in elucidating the molecular biology of this parasite. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号