首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effects of restoration on water‐table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long‐term rise of the water‐table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long‐term monitoring is needed to determine whether the goals of restoration will be met.  相似文献   

2.
Restoration of damaged ecosystems has become an important tool to slow down biodiversity loss and to maintain ecosystem services. Peatland bird populations have shown a substantial decline during the recent decades in Northern Europe as a consequence of peatland drainage. We studied whether restoration of peatlands drained for forestry affects bird communities. We conducted bird surveys at 11 peatlands in Western Finland, where each of the restored and their pristine counterparts were surveyed before restoration and yearly after restoration during 2010–2018. We used linear mixed effect models to analyze whether restoration affected the number of species and territories of peatland specialist and non‐specialist species and permutational multivariate analysis of variance to analyze the change in community composition. Drained parts of the peatlands had higher number of territories of non‐specialist species before restoration, and restoration seemed to decrease these numbers towards the level of pristine parts. By contrast, restoration did not affect the number of peatland specialists and their territories, which was lower in drained than in pristine parts of the peatlands. Bird communities in restored parts remained different from pristine parts in terms of community composition after restoration. Thus, despite the effect of restoration on non‐specialists, a substantially long time may be required for a recovery of the peatland bird communities. Based on our results, it seems that long‐term monitoring of the restored and pristine peatlands is needed to determine whether restoration is effective in recovering the peatland specialist bird species and bird communities in general.  相似文献   

3.
Ecological restoration is expected to reverse the loss of biodiversity and ecosystem services. Due to the low number of well‐replicated field studies, the extent to which restoration recovers plant communities, and the factors underlying possible shortcomings, are not well understood even in medium term. We compared the plant community composition of 38 sites comprising pristine, forestry‐drained, and 5 or 10 years ago restored peatlands in southern Finland, with special interest in understanding spatial variation within studied sites, as well as the development of the numbers and the abundances of target species. Our results indicated a recovery of community composition 5–10 years after restoration, but there was significant heterogeneity in recovery. Plant communities farthest away from ditches were very similar to their pristine reference already 10 years after restoration. In contrast, communities in the ditches were as far from the target as the drained communities. The recovery appears to be characterized by a decline in the number and abundance of species typical to degraded conditions, and increase in the abundance of characteristic peatland species. However, we found no increase above the drained state in the number of characteristic peatland species. Our results suggest that there is a risk of drawing premature conclusions on the efficiency of ecological restoration with the current practice of short‐term monitoring. Our results also illustrate fine‐scale within‐site spatial variability in the degradation and recovery of the plant communities that should be considered when evaluating the success of restoration. Overall, we find the heterogeneous outcome of restoration observed here promising. However, low recovery in the number of characteristic species demonstrates the importance of prioritizing restoration sites, and addressing the uncertainty of recovery when setting restoration targets. It appears that it is easier to eradicate unwanted species than regain characteristic species by restoration.  相似文献   

4.
Developing objective tools for tracking progress of restored sites is of general concern. Here, we present an innovative approach based on principal response curves (PRC) and species classification according to their preferential habitats to monitor changes in community composition. Following large‐scale restoration of a cut‐over peatland, vegetation was surveyed biannually over 8 years. We evaluated whether the establishing plant communities fell within the range of natural variation. We used both general diversity curves and PRC applied on plant species grouped by preferred habitat to compare restored sites and unrestored sites to a reference ecosystem. After 8 years, diversity and richness differed between the sites, with Forest and Ruderal species more prominent in unrestored sites, and Peatland, Forest, and Wetland species dominant in restored sites. The PRC revealed that the restored site became rapidly dominated by typical peatland plants, the main drivers of temporal changes being Sphagnum rubellum, Pohlia nutans, and Mylia anomala. Some differences remained between the restored and the undisturbed species pools: the former had more herbaceous species associated with wetlands such as Calamagrostis canadensis and Typha latifolia and the latter had more forested species like Kalmia angustifolia throughout the study. PRC revealed to be an efficient tool identifying species driving changes at the community level after restoration. In our case study, examining PRC scores after classifying species according to their preferred habitat allowed to illustrate objectively how restoration promotes target species (associated to peatlands) and how lack of intervention benefits ruderal species.  相似文献   

5.
Ecological restoration of mined peatlands in North America involves active reintroduction of bog plant species. Animals are not actively reintroduced, thus the re‐establishment of peatland fauna must occur either by inoculation along with introduced plant material or by dispersal. We examined the extent to which insects are reintroduced to restored sites with plant material by rearing insects from shredded vegetation collected in three donor sites. We assessed differences in abundance, diversity, and composition of taxonomic and trophic groups among seasons and sites. Abundance and species richness did not differ by season, but species assemblages did. The three sites were significantly different in abundance, but not in species richness and assemblages. Few insects emerged from the vegetation, suggesting that shredded plant material may not be the primary source of insect colonists. Insects likely recolonize by active or passive dispersal from the surrounding area. The species pool was similar among donor sites; consequently a mined site could be inoculated with vegetation from another peatland in the same region and this would not affect the insect assemblages at the initial stage of establishment. Diapause may be a major factor for emergence success among seasons of collection. Knowledge of how restoration techniques influence establishment of insect communities will help predict longer‐term outcomes of restoration on biotic communities in peatlands.  相似文献   

6.
As the world's most abundant source of terrestrial carbon, peatlands provide numerous ecosystem services, including habitat biodiversity and freshwater quality. Land and water management practices in relation to peatlands, for either exploitation or rehabilitation, are complicated by several factors: spatial diversity in geochemistry; laborious survey methods that may be subject to confounding factors; regional and irregular climate variations; a lack of generalizability regarding appropriate strategies; and, in some countries, by non-implementation of water quality assessment policies for pollution control and land use. Such factors raise uncertainty in the effectiveness of restoration and rehabilitation strategies, while modern peatland management looks to develop land use schemes that offer minimal risk to the environment. The aims of this paper were to (1) investigate the disparate factors influencing peatland management which confound appropriate interventions for enhanced water quality (2) examine how non-implementation of national policies for water pollution control may result in adverse environmental impacts, and (3) propose an innovative peatland management methodology for a detailed and robust land analysis with water quality being the primary consideration. The paper suggests that optical, radar, and radiometric remote sensing methods may be used to identify management zones within a peatland, that may require variable management strategies during restoration. Satellite remote sensing and Earth observation methodologies are well documented; hence, the prospect and properties of a less documented airborne electromagnetic approach may present an opportunity for improved management of peatlands.  相似文献   

7.
Ecosystem restoration frequently involves the reintroduction of plant material in the degraded ecosystem. When there are no plant nurseries or seeds available on the market, the plant material has to be harvested in the wild, in a “donor ecosystem.” A comprehensive assessment of donor ecosystem recovery is lacking, especially for Sphagnum‐dominated donor peatlands, where all top vegetation is harvested mechanically with different practices. We aimed to evaluate (1) the regeneration of vegetation, especially of Sphagnum mosses, to determine which harvesting practices are best to enhance recovery and (2) the influence of the site hydrological conditions and meteorological variables of the first complete growing season postharvesting on peat moss regeneration. Twenty‐five donor sites covering a 17‐year chronosequence (harvested 1–17 years ago) were inventoried along with 15 associated natural reference sites located in Quebec, New Brunswick, and Alberta, Canada. All donor sites aged 10 years or more were dominated by Sphagnum mosses, though plant composition varied between donor and their associated reference sites because of the wetter conditions at harvested donor sites. Harvesting practices strongly influenced donor site recovery, showing that the skills of the practitioner are an essential ingredient. Harvesting practices minimizing donor site disturbances are recommended, such as the choice of the adequate donor site (localization, hydrologic conditions, vegetation), the use of less disruptive methods, and harvesting when the soil is deeply frozen. This study demonstrated that harvesting surface plant material for peatland restoration is not detrimental towards the recovery of near‐natural peatland ecosystems.  相似文献   

8.
Degradation of groundwater-dependent ecosystems has raised a need for their restoration, but ecological responses to restoration are largely unknown. We evaluated the effectiveness of spring restoration using data from near-natural, restored, and human-impacted springs, the major impact being degradation of spring hydrology by forest drainage. We used both taxonomic (bryophytes, macroinvertebrates, and leaf-decomposing fungi) and functional (leaf breakdown) measures of restoration success. We expected that by reducing surface water input, restoration will improve spring hydrology and place spring ecosystems in a trajectory towards more natural conditions. Restored springs were thermally more stable than impacted springs and the contribution of surface water was greatly reduced. Bryophytes were more abundant in restored than in impacted springs but did not differ among restored and natural springs. Similarly, macroinvertebrate communities differed between restored and impacted springs whereas no difference was detected between restored and natural sites. Species diversity and functional attributes showed weaker responses to restoration. Our results suggest that restoration enhances spring habitat quality, and the first signs of biodiversity enhancement were also detectable only a few years post-restoration. Restoration clearly bears great promise as a conservation tool for the protection of this valuable component of regional freshwater biodiversity.  相似文献   

9.
Status and restoration of peatlands in northern Europe   总被引:3,自引:0,他引:3  
Vasander  H.  Tuittila  E.-S.  Lode  E.  Lundin  L.  Ilomets  M.  Sallantaus  T.  Heikkilä  R.  Pitkänen  M.-L.  Laine  J. 《Wetlands Ecology and Management》2003,11(1-2):51-63
Environmental management of peatlands,landscape ecology and protection of keybiotopes have created needs and pressure torestore drained peatlands to natural mireecosystems. Here, we summarize differentapproaches and restoration techniquesdeveloped for peatland management inEstonia, Sweden, and Finland wherepeatlands are abundant. Without rewetting,plant colonisation on abandoned cut-awayareas is slow due to harsh hydrological andmicroclimatic conditions. However, after restoration, cut-away peatlands may returnto a functional state close to that ofpristine mires, and therefore restore a netcarbon sink function within a few years. Inaddition, restoration techniques can helpto create buffer zones between terrestrialand limnic ecosystems that reduces thenutrient loading imposed on watercourses byforestry operations. Restoration may alsobe important for peatland conservationprograms as drained peatlands are part ofpresent and future conservation areas.Finally, restoration actions in themselvescan have negative environmental impacts.For instance, inundation of peat surfacesresulting from the rewetting process oftenincreases phosphorus leaching. Efforts onpeatland restoration should focus onenvironmental monitoring, research onrestoration and its environmental impact aswell as public relations activities. Inthat respect, knowledge transfer betweenacademics and managers should generatesynergy benefits.  相似文献   

10.
Restoration and management activities targeted at recovering biodiversity can lead to unexpected results. In part, this is due to a lack of understanding of how site‐level characteristics, landscape factors, and land‐use history interact with restoration and management practices to determine patterns of diversity. For plants, such factors may be particularly important since plant populations often exhibit lagged responses to habitat loss and degradation. Here, we assess the importance of site‐level, landscape, and historical effects for understory plant species richness and composition across a set of 40 longleaf pine Pinus palustris woodlands undergoing restoration for the federally endangered red‐cockaded woodpecker in the southeastern United States. Land‐use history had an overarching effect on richness and composition. Relative to historically forested sites, sites with agricultural histories (i.e. former pastures or cultivated fields) supported lower species richness and an altered species composition due to fewer upland longleaf pine woodland community members. Landscape effects did not influence the total number of species in either historically forested or post‐agricultural sites; however, understory species composition was affected by historical connectivity, but only for post‐agricultural sites. The influences of management and restoration activities were only apparent once land‐use history was accounted for. Prescribed burning and mechanical overstory thinning were key drivers of understory composition and promoted understory richness in post‐agricultural sites. In historically forested sites these activities had no impact on richness and only prescribed fire influenced composition. Our findings reveal complex interplays between site‐level, landscape, and historical effects, suggest fundamentally different controls over plant communities in longleaf pine woodlands with varying land‐use history, and underscore the importance of considering land‐use history and landscape effects during restoration.  相似文献   

11.
Peat extraction leads to the formation of areas with altered habitat conditions in comparison to natural peatlands. Restoration of the peat-formation process in these areas is very difficult and requires the creation of suitable conditions for the growth of peatland species. The aim of the study was to analyse the habitat requirements of bryophytes and vascular plants growing on sites of peat extraction (30 and 40 years after extraction was terminated) and to determine whether the water level influences the growth conditions of plants directly or indirectly through changes in the peat physical, hydraulic and chemical properties. Analysing all factors together revealed that the average water level had a decisive influence on bryophytes, but a statistically significant increase in the percentage of variation explained was obtained by taking into account other parameters as well (proportion of macropores, carbon content, and pH). In the case of vascular plants the analysis showed that the water table coefficient included the effects of all of the other factors analysed, and taking them into account did not increase the percentage of variation explained. The two groups of plants use different resources of the environment.  相似文献   

12.

Central European raised bogs are unique and fragile ecosystems inhabited by specialists of higher plants, fungi, and insects. Many of these ecosystems have suffered and are still suffering due to peat harvesting and drainage. The respective specialists, so-called tyrphobionts, and their abundance can serve as good indicators of restoration processes after the disturbance. Various taxonomic groups may differ in the response to the processes. This study shows successional trends in two disturbed raised bogs compared to adjoining undisturbed reference raised bogs. During the growing season of 2019 we compared species richness of successional stages with reference sites for the following five groups of organisms: vascular plants, mosses, fungi, butterflies, and moths. After three decades of spontaneous succession, the species composition did not reach the reference site for any taxonomic group. Instead an alternative, near-natural woodland developed. The different groups of organisms exhibited very similar trends in species richness and participation of tyrphobionts. About half of these specialists occurring at the reference sites were able to colonise the disturbed sites, but mostly in low quantity. Water table and pH appeared significant environmental variables. It seems that habitat limitations play a more important role than dispersal limitations in this restoration process. More successful restoration might be possible by substantially increasing the water table in the disturbed raised bogs.

  相似文献   

13.
Because of the economic and environmental importance of stabilizing fragile sand dune habitats, restoration of dunes has become a common practice. Restoration efforts in the Great Lakes and East Coast regions of North America often consist of planting monocultures of the dominant native grass species, Ammophila breviligulata. We evaluated 18 dune restoration projects in the Great Lakes region conducted over the past 25 years. We characterized attributes of diversity (plants and insects), vegetation structure (plant biomass and cover), and ecological processes (soil nutrients and mycorrhizal fungi abundance) in each restoration, and we compared these measures to geographically paired natural dune communities. Restoration sites were similar to reference sites in most measured variables. Differences between restorations and reference sites were mostly explained by differences in ages, with the younger sites supporting slightly lower plant diversity and mycorrhizal spore abundance than older sites. Plant community composition varied little between restored and reference sites, with only one native forb species, Artemisia campestris, occurring significantly more often in reference sites than restored sites. Although it remains unclear whether more diverse restoration plantings could accelerate convergence on the ecological conditions of reference dunes, in general, traditional restoration efforts involving monoculture plantings of A. breviligulata in Great Lakes sand dunes appear to achieve ecological conditions found in reference dunes.  相似文献   

14.
Ecological restoration is increasingly applied in tropical forests to mitigate biodiversity loss and recover ecosystem functions. In restoration ecology, functional richness, rather than species richness, often determines community assembly, and measures of functional diversity provide a mechanistic link between diversity and ecological functioning of restored habitat. Vertebrate animals are important for ecosystem functioning. Here, we examine the functional diversity of small‐to‐medium sized mammals to evaluate the diversity and functional recovery of tropical rainforest. We assess how mammal species diversity and composition and functional diversity and composition, vary along a restoration chronosequence from degraded pasture to “old‐growth” tropical rainforest in the Wet Tropics of Australia. Species richness, diversity, evenness, and abundance did not vary, but total mammal biomass and mean species body mass increased with restoration age. Species composition in restoration forests converged on the composition of old‐growth rainforest and diverged from pasture with increasing restoration age. Functional metrics provided a clearer pattern of recovery than traditional species metrics, with most functional metrics significantly increasing with restoration age when taxonomic‐based metrics did not. Functional evenness and dispersion increased significantly with restoration age, suggesting that niche complementarity enhances species' abundances in restored sites. The change in community composition represented a functional shift from invasive, herbivorous, terrestrial habitat generalists and open environment specialists in pasture and young restoration sites, to predominantly endemic, folivorous, arboreal, and fossorial forest species in older restoration sites. This shift has positive implications for conservation and demonstrates the potential of tropical forest restoration to recover rainforest‐like, diverse faunal communities.  相似文献   

15.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

16.
Restoration can be important in slowing, or reducing, rates of biodiversity loss, but needs to consider the factors influencing fauna recolonization as part of the recovery process. Although many studies of factors influencing faunal recolonization have examined the influence of in situ site factors, fewer have examined the influence of neighborhood landscape factors, especially in landscapes with permeable matrices. To assess the relative influence of landscape and site factors on reptile recolonization in a production landscape with a permeable matrix, we surveyed reptiles at intact reference sites and post‐mining restoration sites (3–20 years post‐mining [YPM]) in a forest ecosystem in southwestern Australia. Reptile assemblages in restoration sites never converged on those in reference habitat. Reptile species composition and individual species abundances (>20 detections) in restoration sites were primarily influenced by site factors such as canopy height, litter cover, and coarse woody debris volume, and not by landscape factors. We suggest that the most common reptile species in our study area are primarily influenced by site factors, not landscape factors, and most reptiles detected in restoration sites were present by 3–4 YPM. Therefore, it is likely that habitat suitability is the main barrier to most species' recolonization of restoration sites in landscapes with permeable matrices. Management should continue to focus on restoring microhabitats and vegetation structure, which is similar to reference habitat to promote recolonization of restoration sites by reptiles.  相似文献   

17.
1. Many studies have shown traditional species diversity indices to perform poorly in discriminating anthropogenic influences on biodiversity. By contrast, in marine systems, taxonomic distinctness indices that take into account the taxonomic relatedness of species have been shown to discriminate anthropogenic effects. However, few studies have examined the performance of taxonomic distinctness indices in freshwater systems. 2. We studied the performance of four species diversity indices and four taxonomic distinctness indices for detecting anthropogenic effects on stream macroinvertebrate assemblages. Further, we examined the effects of catchment type and area, as well as two variables (pH and total phosphorus) potentially describing anthropogenic perturbation on biodiversity. 3. We found no indications of degraded biodiversity at the putatively disturbed sites. However, species density, rarefied species richness, Shannon's diversity and taxonomic diversity showed higher index values in streams draining mineral as opposed to peatland catchments. 4. Of the major environmental gradients analysed, biodiversity indices showed the strongest relationships with catchment area, lending further support to the importance of stream size for macroinvertebrate biodiversity. Some of the indices also showed weak linear and quadratic relationships to pH and total phosphorus, and residuals from the biodiversity index‐catchment area regressions (i.e. area effect standardized) were more weakly related to pH and total phosphorus than the original index values. 5. There are a number of reasons why the biodiversity indices did not respond to anthropogenic perturbation. First, some natural environmental gradients may mask the effects of perturbation on biodiversity. Secondly, perturbations of riverine ecosystems in our study area may not be strong enough to cause drastic changes in biodiversity. Thirdly, multiple anthropogenic stressors may either increase or decrease biodiversity, and thus the coarse division of sites into reference and altered streams may be an oversimplification. 6. Although neither species diversity nor taxonomic distinctness indices revealed anthropogenic degradation of macroinvertebrate assemblages in this study, the traditional species diversity and taxonomic distinctness indices were very weakly correlated. Therefore, we urge that biodiversity assessment and conservation planning should utilize a number of different indices, as they may provide complementary information about biotic assemblages.  相似文献   

18.
Peatlands represent globally-important ecosystems and carbon stores. However, large areas of peatland have been drained for agriculture, or peat has been harvested for use as fuel or in horticulture. Increasingly, these landscapes are being restored through ditch blocking and rewetting primarily to improve biodiversity and promote peat accumulation. To date we have little knowledge of how these interventions influence the microbial communities in peatlands. We compared the responses of dominant microbial consumers (testate amoebae) to drainage ditch restoration relative to unblocked ditches in a UK upland blanket peatland (Migneint, North Wales). Two techniques were used for restoration: (i) dammed ditches with re-profiling; and (ii) dammed ditches with pools of open water behind each dam. Testate communities in the inter-ditch areas changed markedly over time and between treatments illustrating the potential of this group of organisms as indicators of blanket peatland restoration status. However, the responses of testate amoebae to peat rewetting associated with restoration were partially obscured by inter-annual variability in weather conditions through the course of the experiment. Although there was considerable variability in the response of testate amoebae communities to peatland drain blocking, there were clearly more pronounced changes in samples from the dammed and reprofiled treatments including an increase in diversity, and the appearance of unambiguous wet-indicator species in relatively high abundances (including Amphitrema stenostoma, Archerella flavum, Arcella discoides type, Difflugia bacillifera and Difflugia bacillarium). This reflects a shift towards overall wetter conditions across the site and the creation of new habitats. However, water-table was not a significant control on testate amoebae in this case, suggesting a poor relationship between water table and surface moisture in this sloping blanket peatland. Our findings highlight the potential of testate amoebae as bioindicators of peatland restoration success; however, there is a need for caution as mechanisms driving change in the microbial communities may be more complex than first assumed. Several factors need to be taken into account when implementing biomonitoring studies in peatlands including: (i) the natural variability of the peatland ecosystem under changing weather conditions; (ii) any disturbance connected with the restoration procedures; and (iii) the timescales over which the ecosystem responds to the management intervention. Our results also suggest an indicator species approach based on population dynamics may be more appropriate for biomonitoring peatland restoration than examining changes at the community level.  相似文献   

19.
We investigated the effects of hydromorphological restoration measures (mainly the removal of bank fixations) on riparian mesohabitats, vegetation and carabid beetles by comparing 24 restored to nearby non-restored floodplain sections in Germany. Mesohabitats were recorded along ten equally-spaced transects, plant communities and riparian plant and carabid beetle species along three transects per section. Based on 18 indices including habitat and species diversity, taxonomic diversity and functional indices we compared the frequency and magnitude of changes following restoration, both for the overall dataset and for each site individually. Riparian habitat diversity doubled in restored sections compared to non-restored sections. The numbers of vegetation units and plant and carabid beetle species richness also doubled in restored sections, whereas changes in Shannon diversity were most pronounced for mesohabitats and riparian plants. Taxonomic diversity of carabid beetles decreased in restored sections reflecting post restoration dominance of riparian Bembidion species. Stress-tolerant pioneers of plant and especially carabid species benefit strongly from the re-establishment of open sand and gravel bars, while hygrophilous species, which also include non-riparian species, did not respond to restoration. We conclude that restoring river hydromorphology has almost generally positive effects on riparian habitats and riparian biodiversity. Riparian biota are thus well-suited indicators for the effects of hydromorphological restoration.  相似文献   

20.
The moss layer transfer technique is effective at restoring extracted peatland surfaces. However, remnant peatlands persist on the periphery of extracted surfaces. These remnant peatlands drop steeply to extracted surfaces, producing artificial ecotones that are more challenging to restore. We asked to what degree natural ecotones at undisturbed reference fens can act as models for the restoration of artificial ecotones around an extracted peatland, and whether management actions can ameliorate conditions in artificial ecotones. We compared changes in elevation, water table, peat, and multiple vegetation characteristics between natural ecotones and unmanaged artificial ecotones. We then clear‐cut peripheral strips, completely filled perimeter canals, and smoothed peripheral slopes around sections of the extracted surfaces to assess whether hydrological conditions improved. Without management, artificial ecotones are not good models of natural ecotones. The elevation gradient is steep, and water tables drop steeply within 8 m of blocked perimeter canals, with possible effects at 25 m. The consequent vegetation had denser tree saplings, faster tree growth, almost no moss cover, and low moss species richness. After these management actions, water tables increased to within approximately 5 cm of those along natural ecotones. Future study is required to assess the extent of vegetation recovery, but these results hold promise for a more holistic rehabilitation of ecotones on the periphery of extracted peatland surfaces. We present recommendations to optimize the management actions on the periphery of extracted peatlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号