首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal‐like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii‐containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP‐1 and LAMP‐2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP‐1/2 double‐deficient fibroblasts as well as in LAMP‐1/2 knock‐down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double‐deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP‐1 or LAMP‐2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead‐containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii.  相似文献   

2.
Manipulation of host cell apoptosis is a virulence property shared by many intracellular pathogens to ensure productive replication. For the obligate intracellular pathogen Coxiella burnetii anti‐apoptotic activity, which depends on a functional type IV secretion system (T4SS), has been demonstrated. Accordingly, the C. burnetii T4SS effector protein AnkG was identified to inhibit pathogen‐induced apoptosis, possibly by binding to the host cell mitochondrial protein p32 (gC1qR). However, it was unknown whether AnkG alone is sufficient for apoptosis inhibition or if additional effector proteins are required. Here, we identified two T4SS effector proteins CaeA and CaeB (C . burnetii a nti‐apoptotic e ffector) that inhibit the intrinsic apoptotic pathway. CaeB blocks apoptosis very efficiently, while the anti‐apoptotic activity of CaeA is weaker. Our data suggest that CaeB inhibits apoptosis at the mitochondrial level, but does not bind to p32. Taken together, our results demonstrate that C. burnetii harbours several anti‐apoptotic effector proteins and suggest that these effector proteins use different mechanism(s) to inhibit apoptosis.  相似文献   

3.
4.
The intracellular bacterial pathogen Coxiella burnetii is a category B select agent that causes human Q fever. In vivo, C. burnetii targets alveolar macrophages wherein the pathogen replicates in a lysosome‐like parasitophorous vacuole (PV). In vitro, C. burnetii infects a variety of cultured cell lines that have collectively been used to model the pathogen's infectious cycle. However, differences in the cellular response to infection have been observed, and virulent C. burnetii isolate infection of host cells has not been well defined. Because alveolar macrophages are routinely implicated in disease, we established primary human alveolar macrophages (hAMs) as an in vitro model of C. burnetii–host cell interactions. C. burnetii pathotypes, including acute disease and endocarditis isolates, replicated in hAMs, albeit with unique PV properties. Each isolate replicated in large, typical PV and small, non‐fused vacuoles, and lipid droplets were present in avirulent C. burnetii PV. Interestingly, a subset of small vacuoles harboured single organisms undergoing degradation. Prototypical PV formation and bacterial growth in hAMs required a functional type IV secretion system, indicating C. burnetii secretes effector proteins that control macrophage functions. Avirulent C. burnetii promoted sustained activation of Akt and Erk1/2 pro‐survival kinases and short‐termphosphorylation of stress‐related p38. Avirulent organisms also triggered a robust, early pro‐inflammatory response characterized by increased secretion of TNF‐α and IL‐6, while virulent isolates elicited substantially reduced secretion of these cytokines. A corresponding increase in pro‐ and mature IL‐1β occurred in hAMs infected with avirulent C. burnetii, while little accumulation was observed following infection with virulent isolates. Finally, treatment of hAMs with IFN‐γ controlled intracellular replication, supporting a role for this antibacterial insult in the host response to C. burnetii. Collectively, the current results demonstrate the hAM model is a human disease‐relevant platform for defining novel innate immune responses to C. burnetii.  相似文献   

5.

Background  

Coxiella burnetii is an intracellular bacterial pathogen that causes acute and chronic disease in humans. Bacterial replication occurs within enlarged parasitophorous vacuoles (PV) of eukaryotic cells, the biogenesis and maintenance of which is dependent on C. burnetii protein synthesis. These observations suggest that C. burnetii actively subverts host cell processes, however little is known about the cellular biology mechanisms manipulated by the pathogen during infection. Here, we examined host cell gene expression changes specifically induced by C. burnetii proteins during infection.  相似文献   

6.
The obligate intracellular bacterium Coxiella burnetii causes the zoonotic disease Q‐fever. Coxiella pathogenesis depends on a functional type IV secretion system (T4SS). The T4SS effector AnkG inhibits pathogen‐induced host cell apoptosis, which is believed to be important for the establishment of a persistent infection. However, the mode of action of AnkG is not fully understood. We have previously demonstrated that binding of AnkG to p32 is crucial for migration of AnkG into the nucleus and that nuclear localization of AnkG is essential for its anti‐apoptotic activity. Here, we compared the activity of AnkG from the C. burnetii strains Nine Mile and Dugway. Although there is only a single amino acid exchange at residue 11, we observed a difference in anti‐apoptotic activity and nuclear migration. Mutation of amino acid 11 to glutamic acid, threonine or valine results in AnkG mutants that had lost the anti‐apoptotic activity and the ability to migrate into the nucleus. We identified Importin‐α1 to bind to AnkG, but not to the mutants and concluded that binding of AnkG to p32 and Importin‐α1 is essential for migration into the nucleus. Also during Coxiella infection binding of AnkG to p32 and Importin‐α1 is crucial for nuclear localization of AnkG.  相似文献   

7.
《Autophagy》2013,9(1):177-178
Coxiella burnetii is an obligate intracellular bacterium that generates large vacuoles in which this pathogen replicates and survives. We have previously demonstrated that C. burnetii interacts with the autophagic pathway as a strategy for its survival and replication. Coxiella displays an anti-apoptotic activity to maintain host cell viability, leading to a persistent infection. Our recent study reveals that Beclin 1 is recruited to the Coxiella-membrane vacuole favoring its development and bacterial replication. In contrast, the anti-apoptotic protein Bcl-2 alters the normal development of the Coxiella-replicative compartment. In addition, our results indicate that C. burnetii infection modulates autophagy and apoptotic pathways via Beclin 1-Bcl-2 interplay to establish a successful infection in the host cell. Of note, this pathogen-host cell model has allowed uncovering a novel function of Beclin 1 as a regulator of the anti-apoptotic activity of Bcl-2. We have also established that a proper interplay between Beclin 1 and Bcl-2 is required for both autophagy and apoptosis modulation.  相似文献   

8.
Coxiella burnetii is an obligate intracellular bacterial pathogen and the causative agent of Q fever. Chronic Q fever can produce debilitating fatigue and C. burnetii is considered a significant bioterror threat. C. burnetii occupies the monocyte phagolysosome and although prior work has explained features of the host-pathogen interaction, many aspects are still poorly understood. We have conducted a proteomic investigation of human Monomac I cells infected with the Nine Mile Phase II strain of C. burnetii and used the results as a framework for a systems biology model of the host response. Our principal methodology was multiplex differential 2D gel electrophoresis using ZDyes, a new generation of covalently linked fluorescent protein detection dyes under development at Montana State University. The 2D gel analysis facilitated the detection of changes in posttranslational modifications on intact proteins in response to infection. The systems model created from our data a framework for the design of experiments to seek a deeper understanding of the host-pathogen interactions.  相似文献   

9.
Chlamydia, an obligate intracellular bacterium which passes its entire lifecycle within a membrane‐bound vacuole called the inclusion, has evolved a variety of unique strategies to establish an advantageous intracellular niche for survival. This review highlights the mechanisms by which Chlamydia subverts vesicular transport in host cells, particularly by hijacking the master controllers of eukaryotic trafficking, the Rab proteins. A subset of Rabs and Rab interacting proteins that control the recycling pathway or the biosynthetic route are selectively recruited to the chlamydial inclusion membrane. By interfering with Rab‐controlled transport steps, this intracellular pathogen not only prevents its own degradation in the phagocytic pathway, but also creates a favourable intracellular environment for growth and replication. Chlamydia, a highly adapted and successful intracellular pathogen, has several redundant strategies to re‐direct vesicles emerging from biosynthetic compartments that carry host molecules essential for bacterial development. Although current knowledge is limited, the latest findings have shed light on the role of Rab proteins in the course of chlamydial infections and could open novel opportunities for anti‐chlamydial therapy.  相似文献   

10.
Coxiella burnetii is an obligate intracellular gram-negative bacterium uniquely evolved to thrive in the inhospitable phagolysosome of macrophage. C. burnetii causes Q fever in humans and animals, which is emerging as a global public health concern. It is highly infectious and designated as a category B biowarfare agent because of its ubiquitous nature, abundant natural reservoirs, high resistance to environmental conditions, ease of transmission and low infectious dose. The lack of knowledge and awareness of C. burnetii leads to under-reporting and under-diagnosing of Q fever cases. Therefore, further understanding of the interactions between the infected host and the bacteria is necessary. C. burnetii macrophage infectivity potentiator (cb-Mip) is a secreted protein of 230 amino acids involving in intracellular survival of the pathogen. cb-Mip belongs to the family of FK506 binding protein, which possesses peptidyl-prolyl cis/trans isomerase (PPIase) activity. Besides acting as a PPIase, Mip protein homolog has been identified as virulence factor of many intracellular pathogenic microorganisms. In the present study, we report the near complete resonance assignments of the PPIase domain-containing region of Mip protein of C. burnetii. Secondary structure prediction based on chemical shift index analysis indicates that the protein adopts a predominately beta-strand structure, which is consistent with the crystal structure of homologous Mip protein in Legionella pneumophila.  相似文献   

11.
Q-fever is a zoonosis caused by the gram-negative obligate intracellular pathogen Coxiella burnetii. Since its discovery, and particularly following the recent outbreaks in the Netherlands, C. burnetii appeared as a clear public health concern. In the present study, the infectious potential displayed by goat and cattle isolates of C. burnetii was compared to a reference strain (Nine Mile) using both in vitro (human HeLa and bovine macrophage cells) and in vivo (BALB/c mice) models. The isolates had distant genomic profiles with one - the goat isolate - being identical to the predominant strain circulating in the Netherlands during the 2007–2010 outbreaks. Infective doses were established with ethidium monoazide-PCR for the first time here applied to C. burnetii. This method allowed for the preparation of reproducible and characterized inocula thanks to its capacity to discriminate between live and dead cells. Globally, the proliferative capacity of the Nine Mile strain in cell lines and mice was higher compared to the newly isolated field strains. In vitro, the bovine C. burnetii isolate multiplied faster in a bovine macrophage cell line, an observation tentatively explained by the preferential specificity of this strain for allogeneic host cells. In the BALB/c mouse model, however, the goat and bovine isolates multiplied at about the same rate indicating no peculiar hypervirulent behavior in this animal model.  相似文献   

12.
Chlamydiae are obligate intracellular bacterial pathogens that replicate within a specialized membrane‐bound compartment, termed an ‘inclusion’. The inclusion membrane is a critical host–pathogen interface, yet the extent of its interaction with cellular organelles and the origin of this membrane remain poorly defined. Here we show that the host endoplasmic reticulum (ER) is specifically recruited to the inclusion, and that key rough ER (rER) proteins are enriched on and translocated into the inclusion. rER recruitment is a Chlamydia‐orchestrated process that occurs independently of host trafficking. Generation of infectious progeny requires an intact ER, since ER vacuolation early during infection stalls inclusion development, whereas disruption post ER recruitment bursts the inclusion. Electron tomography and immunolabelling of Chlamydia‐infected cells reveal ‘pathogen synapses’ at which ordered arrays of chlamydial type III secretion complexes connect to the inclusion membrane only at rER contact sites. Our data show a supramolecular assembly involved in pathogen hijack of a key host organelle.  相似文献   

13.
Chlamydia trachomatis, an obligate intracellular pathogen, survives within host cells in a special compartment named ‘inclusion’ and takes advantage of host vesicular transport pathways for its growth and replication. Rab GTPases are key regulatory proteins of intracellular trafficking. Several Rabs, among them Rab11 and Rab14, are implicated in chlamydial development. FIP2, a member of the Rab11‐Family of Interacting Proteins, presents at the C‐terminus a Rab‐binding domain that interacts with both Rab11 and Rab14. In this study, we determined and characterized the recruitment of endogenous and GFP‐tagged FIP2 to the chlamydial inclusions. The recruitment of FIP2 is specific since other members of the Rab11‐Family of Interacting Proteins do not associate with the chlamydial inclusions. The Rab‐binding domain of FIP2 is essential for its association. Our results indicate that FIP2 binds to Rab11 at the chlamydial inclusion membrane through its Rab‐binding domain. The presence of FIP2 at the chlamydial inclusion favours the recruitment of Rab14. Furthermore, our results show that FIP2 promotes inclusion development and bacterial replication. In agreement, the silencing of FIP2 decreases the bacterial progeny. C. trachomatis likely recruits FIP2 to hijack host intracellular trafficking to redirect vesicles full of nutrients towards the inclusion.  相似文献   

14.
Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco‐2 cells with 13C‐marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC‐MS‐based isotopologue analysis of protein‐derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT‐ICR‐MS analyses also demonstrated that label from exogenous 13C‐glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6‐phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13C‐malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co‐substrate usage of intracellular C. trachomatis in a stream‐lined bipartite metabolism with host cell‐supplied amino acids for protein biosynthesis, host cell‐provided glucose 6‐phosphate for cell wall biosynthesis, and, to some extent, one or more host cell‐derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso‐2,6‐diaminopimelate required for the formation of chlamydial peptidoglycan.  相似文献   

15.
《Autophagy》2013,9(3):179-181
Coxiella burnetii is a Gram-negative obligate intracellular bacterium that infects a wide range of hosts including humans, causing Q fever, a disease characterized by high fever and flu-like symptoms. After its internalization the Coxiella-containing phagosomes interact with intracellular compartments and generate a large replicative vacuole that displays certain characteristics of a phagolysosome. We have shown that this bacterially-customized replicative vacuole also has the hallmarks of an autophagosomal compartment. Furthermore, in a recent publication we have reported that induction of autophagy is beneficial for the replication and survival of Coxiella. Different morphological forms of this bacterium have been described during its developmental cycle. Here we present additional data and discuss a model indicating that induction of autophagy favors the differentiation of the Coxiella small cell variants to the metabolically active large cells variants. We postulate that nutrient acquisition, likely by fusion with the nutrient-rich autophagic vacuoles, triggers the development of the LCVs, which actively multiply in the host cell.  相似文献   

16.
Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule‐dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane‐associated components (such as E‐cadherin, ZO‐1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu‐3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis‐targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.  相似文献   

17.
Anaplasma phagocytophilum is an emerging human pathogen and obligate intracellular bacterium. It inhabits a host cell‐derived vacuole and cycles between replicative reticulate cell (RC) and infectious dense‐cored (DC) morphotypes. Host–pathogen interactions that are critical for RC‐to‐DC conversion are undefined. We previously reported that A. phagocytophilum recruits green fluorescent protein (GFP)‐tagged Rab10, a GTPase that directs exocytic traffic from the sphingolipid‐rich trans‐Golgi network (TGN) to its vacuole in a guanine nucleotide‐independent manner. Here, we demonstrate that endogenous Rab10‐positive TGN vesicles are not only routed to but also delivered into the A. phagocytophilum‐occupied vacuole (ApV). Consistent with this finding, A. phagocytophilum incorporates sphingolipids while intracellular and retains them when naturally released from host cells. TGN vesicle delivery into the ApV is Rab10 dependent, up‐regulates expression of the DC‐specific marker, APH1235, and is critical for the production of infectious progeny. The A. phagocytophilum surface protein, uridine monophosphate kinase, was identified as a guanine nucleotide‐independent, Rab10‐specific ligand. These data delineate why Rab10 is important for the A. phagocytophilum infection cycle and expand the understanding of the benefits that exploiting host cell membrane traffic affords intracellular bacterial pathogens.  相似文献   

18.
Invasion and colonization of host cells by bacterial pathogens depend on the activity of a large number of prokaryotic proteins, defined as virulence factors, which can subvert and manipulate key host functions. The study of host/pathogen interactions is therefore extremely important to understand bacterial infections and develop alternative strategies to counter infectious diseases. This approach however, requires the development of new high-throughput assays for the unbiased, automated identification and characterization of bacterial virulence determinants. Here, we describe a method for the generation of a GFP-tagged mutant library by transposon mutagenesis and the development of high-content screening approaches for the simultaneous identification of multiple transposon-associated phenotypes. Our working model is the intracellular bacterial pathogen Coxiellaburnetii, the etiological agent of the zoonosis Q fever, which is associated with severe outbreaks with a consequent health and economic burden. The obligate intracellular nature of this pathogen has, until recently, severely hampered the identification of bacterial factors involved in host pathogen interactions, making of Coxiella the ideal model for the implementation of high-throughput/high-content approaches.  相似文献   

19.
The intracellular bacterial agent of Q fever, Coxiella burnetii, translocates effector proteins into its host cell cytosol via a Dot/Icm type IV secretion system (T4SS). The T4SS is essential for parasitophorous vacuole formation, intracellular replication, and inhibition of host cell death, but the effectors mediating these events remain largely undefined. Six Dot/Icm substrate-encoding genes were recently discovered on the C. burnetii cryptic QpH1 plasmid, three of which are conserved among all C. burnetii isolates, suggesting that they are critical for conserved pathogen functions. However, the remaining hypothetical proteins encoded by plasmid genes have not been assessed for their potential as T4SS substrates. In the current study, we further defined the T4SS effector repertoire encoded by the C. burnetii QpH1, QpRS, and QpDG plasmids that were originally isolated from acute-disease, chronic-disease, and severely attenuated isolates, respectively. Hypothetical proteins, including those specific to QpRS or QpDG, were screened for translocation using the well-established Legionella pneumophila T4SS secretion model. In total, six novel plasmid-encoded proteins were translocated into macrophage-like cells by the Dot/Icm T4SS. Four newly identified effectors are encoded by genes present only on the QpDG plasmid from severely attenuated Dugway isolates, suggesting that the presence of specific effectors correlates with decreased virulence. These results further support the idea of a critical role for extrachromosomal elements in C. burnetii pathogenesis.  相似文献   

20.

Background  

Coxiella burnetii, the bacterium causing Q fever, is an obligate intracellular biosafety level 3 agent. Detection and quantification of these bacteria with conventional methods is time consuming and dangerous. During the last years, several PCR based diagnostic assays were developed to detect C. burnetii DNA in cell cultures and clinical samples. We developed and evaluated TaqMan-based real-time PCR assays that targeted the singular icd (isocitrate dehydrogenase) gene and the transposase of the IS1111a element present in multiple copies in the C. burnetii genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号