首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil microbial communities have a profound influence on soil chemical processes and subsequently influence tree nutrition and growth. This study examined how the addition of a commercial inoculum or forest‐collected soils influenced nitrogen (N) and phosphorus (P) dynamics, soil microbial community structure, and growth in Liriodendron tulipifera and Prunus serotina tree saplings. Inoculation method was an important determinant of arbuscular mycorrhizal fungi (AMF) community structure in both species and altered soil N dynamics in Prunus and soil P dynamics in Liriodendron. Prunus saplings receiving whole forest soil transfers had a higher rhizosphere soil carbon/nitrogen ratio and ammonia content at the end of the first growing season when compared to unmanipulated control saplings. Inoculation with whole forest soil transfers resulted in increased inorganic phosphorus in Liriodendron rhizosphere soils. The number of AMF terminal restriction fragments was significantly greater in rhizosphere soils of Liriodendron saplings inoculated with whole forest soil transfers and Prunus saplings receiving either inoculum source than control saplings. Forest soil inoculation also increased AMF colonization and suppressed stem elongation in Liriodendron after 16 months; conversely, Prunus AMF colonization was unchanged and stem elongation was significantly greater when saplings were inoculated with whole forest soil transfers. Longer term monitoring of tree response to inoculation will be essential to assess whether early costs of AMF colonization may provide long‐term benefits. This study provides insight into how practitioners can use microbial inoculation to alter AMF community structure and functioning, subsequently influencing tree growth and nutrient cycling during the restoration of degraded lands.  相似文献   

2.
An extensive field trial was established on a fly ash deposit (1) to evaluate whether the inoculation with arbuscular mycorrhizal fungi (AMF) and/or ectomycorrhizal fungi (EcMF) improves growth and survival of 13 planted tree species and (2) to trace the inoculated mycorrhizal fungi in tree roots after one growing season. Molecular methods were applied to characterize AMF and EcMF entering the studied system (inocula, native soil, and roots of nursery seedlings). Biometric parameters and mortality of the trees were recorded and the presence of AMF and EcMF in sampled trees was determined both microscopically and genetically. Mycorrhizal inoculation did not improve survival or growth of any tree species. Most AMF‐host and all EcMF‐host seedlings were highly precolonized already from the nursery. An abundant and diverse AMF community was also found in the field soil. The AMF inoculum taxa partially overlapped with AMF in the native soil and in the precolonized roots. After one season, the only two inoculum‐unique AMF taxa were detected in host species non‐precolonized or only partially precolonized from the nursery. The components of EcMF inoculum were not detected in any sampled tree. After the season, the ectomycorrhizal hosts maintained most of their original EcMF taxa gathered in nursery, some tree species were additionally colonized by EcMF probably originating from the soil. Our results show considerable self‐restoration potential of nature on the target site. Mycorrhizal inoculation thus did not bring any conclusive advantage to the planted trees and seems superfluous for reclamation practice on the fly ash deposit.  相似文献   

3.
Extensive tree mortality in forests can change the community composition of soil fungi altering seedling establishment, a process critical to forest restoration. Disturbances that result in the loss of ectomycorrhizal fungi, in particular, may impede the establishment of tree species reliant on these symbionts for their survival. Inoculation of seedlings with soil from intact forests may improve the establishment of seedlings in such disturbances but the method has rarely been tested in the field. Here, we assess whether soil inoculation improves lodgepole pine (Pinus contorta var. latifolia) seedling performance in conspecific stands with high levels of tree mortality caused by a mountain pine beetle (Dendroctonus ponderosae) outbreak and whether underlying soil type modifies inoculation effects. We first inoculated seedlings in a growth chamber with small amounts of soils (5% volume) originating from either intact (<10%) or “beetle-killed” (>70% pine basal area killed) conspecific stands or added no soil inoculum and, after 4 months, transplanted them into 15 beetle-killed stands. After two growing seasons, root-associated fungal communities of seedlings receiving inoculum from intact stands differed in composition from those receiving inoculum from beetle-killed stands or no inoculum. However, inoculation had no effect on seedling survival, height, or biomass. Site properties, including soil texture and the resident fungal community composition, overwhelmed the effect of soil inoculation on seedling performance. Seedling survival and shoot mass was higher in sandy than loamy soils. Restoration to improve seedling performance in beetle-killed stands should consider stand-level treatments as soil inoculation at the level evaluated was ineffective.  相似文献   

4.
Ectomycorrhizal networks may facilitate the establishment and survival of seedlings regenerating under the canopies of tropical forests and are often invoked as a potential contributor to monodominance. We identified ectomycorrhizal fungi in a monodominant Gilbertiodendron dewevrei (Fabaceae) rain forest in Cameroon, using sporocarps and ectomycorrhizae of three age categories (seedlings, intermediate trees, and large trees) and tentatively revealed nutrient transfer through ectomycorrhizal networks by measuring spontaneous isotopic (13C and 15N) abundances in seedlings. Sporocarp surveys revealed fewer ectomycorrhizal fungal taxa (59 species from 1030 sporocarps) than molecular barcoding of ectomycorrhizal roots (75 operational taxonomic units from 828 ectomycorrhizae). Our observations suggest that ectomycorrhizal fungal diversity is similar to that in other mixed tropical forests and provide the first report of the TuberHelvella lineage in a tropical forest. Despite some differences, all age categories of G. dewevrei had overlapping ectomycorrhizal fungal communities, with families belonging to Thelephoraceae, Russulaceae, Sebacinaceae, Boletaceae, and Clavulinaceae. Of the 49 operational taxonomic units shared by the three age categories (65.3% of the ectomycorrhizal fungal community), 19 were the most abundant on root tips of all categories (38.7% of the shared taxa), supporting the likelihood of ectomycorrhizal networks. However, we obtained no evidence for nutrient transfer from trees to seedlings. We discuss the composition of the ectomycorrhizal fungal community among the G. dewevrei age categories and the possible role of common ectomycorrhizal networks in this rain forest.  相似文献   

5.
Early community assembly of soil microbial communities is essential for pedogenesis and development of organic legacies. We examined fungal and bacterial successions along a well‐established temperate glacier forefront chronosequence representing ~70 years of deglaciation to determine community assembly. As microbial communities may be heavily structured by establishing vegetation, we included nonvegetated soils as well as soils from underneath four plant species with differing mycorrhizal ecologies (Abies lasiocarpa, ectomycorrhizal; Luetkea pectinata, arbuscular mycorrhizal; Phyllodoce empetriformis, ericoid mycorrhizal; Saxifraga ferruginea, nonmycorrhizal). Our main objectives were to contrast fungal and bacterial successional dynamics and community assembly as well as to decouple the effects of plant establishment and time since deglaciation on microbial trajectories using high‐throughput sequencing. Our data indicate that distance from glacier terminus has large effects on biomass accumulation, community membership, and distribution for both fungi and bacteria. Surprisingly, presence of plants rather than their identity was more important in structuring bacterial communities along the chronosequence and played only a very minor role in structuring the fungal communities. Further, our analyses suggest that bacterial communities may converge during assembly supporting determinism, whereas fungal communities show no such patterns. Although fungal communities provided little evidence of convergence in community structure, many taxa were nonrandomly distributed across the glacier foreland; similar taxon‐level responses were observed in bacterial communities. Overall, our data highlight differing drivers for fungal and bacterial trajectories during early primary succession in recently deglaciated soils.  相似文献   

6.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   

7.
不同生境黑果枸杞根际与非根际土壤微生物群落多样性   总被引:2,自引:0,他引:2  
李岩  何学敏  杨晓东  张雪妮  吕光辉 《生态学报》2018,38(17):5983-5995
研究典型生境黑果枸杞根际与非根际土壤微生物群落多样性及其与土壤理化性质间的关系,为进一步研究黑果枸杞抗逆性提供理论数据。采集新疆精河县艾比湖地区(EB)盐碱地、乌苏市(WS)路旁荒地、五家渠市(WQ)人工林带的黑果枸杞根际与非根际土壤,利用Illumina-MiSeq高通量测序技术分析细菌和真菌群落组成和多样性。结果表明:根际土壤细菌多样性高于非根际土壤(WQ除外),而根际真菌多样性低于非根际土壤。WQ非根际土壤细菌和真菌多样性均高于EB和WS;根际细菌多样性排序为EBWSWQ,根际真菌多样性排序为WSEBWQ。根际土壤优势细菌门依次是变形菌门、拟杆菌门、放线菌门、酸杆菌门,真菌优势门为子囊菌门、担子菌门。根际土壤细菌变形菌门、拟杆菌门、酸杆菌门的相对丰度高于非根际土壤,而厚壁菌在根际土壤中的丰度显著降低,真菌优势门丰度在根际土和非根际土中的变化趋势因地区而异; Haliea、Gp10、Pelagibius、Microbulbifer、假单胞菌属、Thioprofundum、Deferrisoma是根际土壤细菌优势属;多孢子菌属、支顶孢属、Corollospora、Cochlonema是根际真菌优势属。细菌、真菌优势类群(门、属)的组成以及丰富度存在地区间差异,厚壁菌门在EB地区的丰富度显著高于含盐量较低的WS、WQ;盐碱生境EB中根际土壤嗜盐细菌的丰度高于非盐碱生境(WQ、WS),如盐单胞菌属、动性球菌属、Geminicoccu、Pelagibius、Gracilimonas、Salinimicrobium等。小囊菌属是EB根际真菌的最优势属,Melanoleuca是WQ和WS的最优势属,地孔菌属、Xenobotrytis、Brachyconidiellopsis、多孢子菌属等在EB根际土壤中的丰度显著高于WQ和WS。非盐碱生境(WS和WQ)的微生物群落之间的相似性较高,并且高于与盐碱环境(EB)之间的相似性,表明土壤含盐量对微生物群落组成丰度具有重要的影响。  相似文献   

8.
Forest succession may cause changes in nitrogen (N) availability, vegetation and fungal community composition that affect N uptake by trees and their mycorrhizal symbionts. Understanding how these changes affect the functioning of the mycorrhizal symbiosis is of interest to ecosystem ecology because of the fundamental roles mycorrhizae play in providing nutrition to trees and structuring forest ecosystems. We investigated changes in tree and mycorrhizal fungal community composition, the availability and uptake of N by trees and mycorrhizal fungi in a forest undergoing a successional transition (age-related loss of early successional tree taxa). In this system, 82–96% of mycorrhizal hyphae were ectomycorrhizal (EM). As biomass production of arbuscular mycorrhizal (AM) trees increased, AM hyphae comprised a significantly greater proportion of total fungal hyphae, and the EM contribution to the N requirement of EM-associated tree taxa declined from greater than 75% to less than 60%. Increasing N availability was associated with lower EM hyphal foraging and 15N tracer uptake, yet the EM-associated later-successional species Quercus rubra was nonetheless a stronger competitor for 15N than AM-associated Acer rubrum, likely due to the more extensive nature of the persistent EM hyphal network. These results indicate that successional increases in N availability and co-dominance by AM-associated trees have increased the importance of AM fungi in the mycorrhizal community, while down-regulating EM N acquisition and transfer processes. This work advances understanding of linkages between tree and fungal community composition, and indicates that successional changes in N availability may affect competition between tree taxa with divergent resource acquisition strategies.  相似文献   

9.
From 1913 to 1980, two zinc smelters in Palmerton, Pennsylvania, emitted large quantities of atmospheric pollutants nearly eliminating forests along a ridge above the town. In 2008, a remediation treatment was applied to the land above one of the smelters that included the planting of several locally adapted plant species. It also included mineral fertilization and mycorrhizal inoculation. One of the species, the Pitch pine (Pinus rigida, Mill.), is a native tree that is both tolerant of metalliferous soils and obligatorily ectomycorrhizal. This report summarizes the results of two observational studies conducted 5 years after the remediation treatment. The first study's objective was to compare ectomycorrhizal communities on treated Pitch pine saplings, with communities on naturally regenerating saplings in an adjacent non-remediated area. The second study's objective was to determine if the composition of the fungal communities on root tips of naturally regenerating Pitch pine saplings differed with distance from the smelters. Fungal community compositions were determined using internal transcribed spacer rRNA sequences. Comparisons of sequences from the remediated and non-remediated sites revealed that communities at the remediated sites had lower taxonomic diversity and were dominated by members of a genus in the remediation inoculant. The results of the smelter-proximity study indicated that although fungal diversity did not differ markedly with distance from the smelters, the relative abundances of some taxa were greater on saplings growing directly above the smelters, where the soils contained highest concentrations of zinc and cadmium.  相似文献   

10.
Abstract Poor growth of Quercus robur L. (oak) trees has been reported on mine sites where overburden and subsoil have been used in the reinstatement of surface layers. This stunting has been attributed to a lack of macronutrients and to an adverse soil environment for root growth and mycorrhizal development. Growth, mineral nutrition, and ectomycorrhizal colonization of Q. robur seedlings were studied in an experiment carried out under controlled growing conditions in which mine spoil material was enriched with a leaf litter mulch. Enrichment of mine spoil material was found to produce a significant increase in growth and foliar N concentrations of oak seedlings. Inoculation with three taxa of ectomycorrhizal fungi did not benefit seedlings when mine spoil was the only substrate, possibly due to the poor physical properties of the unamended spoil and lack of nutrients. Inoculation with two taxa, Laccaria laccata and Hebeloma crustuliniforme, isolated from 3‐year‐old trees produced a significant stimulation of growth in the organically enriched treatment, which was believed to be due to greater uptake of mineralized N. However, Cortinarius anomalus isolated from fruit bodies associated with a 15‐year‐old tree did not increase biomass. The presence of organic matter was found to result in a significant stimulation of mycorrhizal infection by both inoculum and contaminant mycobionts. Recommendations are made for improving the establishment and growth of oak seedlings on reinstated sites.  相似文献   

11.
Although plants introduced for site restoration are pre‐selected for specific traits (e.g. trace element bioaccumulation, rapid growth in poor soils), the in situ success of these plants likely depends on the recruitment of appropriate rhizosphere microorganisms from their new environment. We introduced three willow (Salix spp.) cultivars to a contaminated landfill, and performed soil chemical analyses, plant measurements, and Ion Torrent sequencing of rhizospheric fungal and bacterial communities at 4 and 16 months post‐planting. The abundance of certain dominant fungi was linked to willow accumulation of Zn, the most abundant trace element at the site. Interestingly, total Zn accumulation was better explained by fungal community structure 4 months post‐planting than 16 months post‐planting, suggesting that initial microbial recruitment may be critical. In addition, when the putative ectomycorrhizal fungi Sphaerosporella brunnea and Inocybe sp. dominated the rhizosphere 4 months post‐planting, Zn accumulation efficiency was negatively correlated with fungal diversity. Although field studies such as this rely on correlation, these results suggest that the soil microbiome may have the greatest impact on plant function during the early stages of growth, and that plant–fungus specificity may be essential.  相似文献   

12.
To better understand soil carbon cycling in forest ecosystems, we studied the proportion of fungal sheath area (FSA) in the cross-sectional ectomycorrhizal area in 13 tree species. Ectomycorrhizal samples were collected from subalpine and temperate forests in Japan. The FSA values were in the range of 12% to 56% across all tree species, tree ages, and fungal species. In Abies firma and Quercus serrata, the FSA values were larger in mature trees than in seedlings, whereas no such differences were found in Pinus densiflora and Fagus crenata. In broad-leaved trees, because the plant tissue radii lay within a narrow range, the FSA was affected mainly by the fungal sheath thickness. In conifers, however, the plant tissue radii varied widely among genera, so the FSA was affected by both the plant tissue radius and the fungal sheath thickness. Our findings suggest that the fungal content of ectomycorrhizal tips differs among tree species and fungal species, so that both parameters must be considered in studies of forest carbon cycling. The estimates revealed that data gathering in each type of forest leads to more accurate estimates of the biomass of fungi in ectomycorrhizal tips.  相似文献   

13.
基于高通量测序的杨树人工林根际土壤真菌群落结构   总被引:2,自引:0,他引:2  
研究不同根序细根根际土壤微生物群落组成结构对深入了解根系-微生物互作关系具有重要意义.本研究采用Illumina MiSeq测序平台,对杨树人工林非根际土壤和不同根序细根根际土壤的真菌群落结构进行分析.物种注释结果显示: 杨树1~2级根(R1)、3级根(R2)和4~5级(R3)根际及非根际土壤(NR)中分别包含128、124、130和101个真菌属,表明杨树根际存在对真菌群落构建的选择性机制.不同根序根际土壤中相对丰度>1%的真菌属有7个,木霉属在1~2级根根际土壤中丰度较高,毛孢子菌属和曲霉属分别是3级根和4~5级根根际土壤中丰度最高的真菌属.α多样性指数表明: 根际土壤真菌的多样性在不同根序间存在显著差异,低级根显著高于高级根(P<0.05).β多样性指数表明: 真菌群落随着序级的升高差异性不断上升,相似性不断降低.不同根序细根根际真菌群落的趋异化组成和结构与细根功能具有密切关系.  相似文献   

14.
Cryoturbation, the burial of topsoil material into deeper soil horizons by repeated freeze–thaw events, is an important storage mechanism for soil organic matter (SOM) in permafrost-affected soils. Besides abiotic conditions, microbial community structure and the accessibility of SOM to the decomposer community are hypothesized to control SOM decomposition and thus have a crucial role in SOM accumulation in buried soils. We surveyed the microbial community structure in cryoturbated soils from nine soil profiles in the northeastern Siberian tundra using high-throughput sequencing and quantification of bacterial, archaeal and fungal marker genes. We found that bacterial abundances in buried topsoils were as high as in unburied topsoils. In contrast, fungal abundances decreased with depth and were significantly lower in buried than in unburied topsoils resulting in remarkably low fungal to bacterial ratios in buried topsoils. Fungal community profiling revealed an associated decrease in presumably ectomycorrhizal (ECM) fungi. The abiotic conditions (low to subzero temperatures, anoxia) and the reduced abundance of fungi likely provide a niche for bacterial, facultative anaerobic decomposers of SOM such as members of the Actinobacteria, which were found in significantly higher relative abundances in buried than in unburied topsoils. Our study expands the knowledge on the microbial community structure in soils of Northern latitude permafrost regions, and attributes the delayed decomposition of SOM in buried soils to specific microbial taxa, and particularly to a decrease in abundance and activity of ECM fungi, and to the extent to which bacterial decomposers are able to act as their functional substitutes.  相似文献   

15.
? Premise of the study: Woody species in the Rosaceae form ectomycorrhizal associations, but the fungal symbionts are unknown. The species of fungi determine whether host plants are isolated from other ectomycorrhizal species in the plant community or linked with other trees through mycorrhizal networks. In this study we identified the fungi that form ectomycorrhizas with Cercocarpus ledifolius (curl-leaf mountain mahogany). ? Methods: Soil samples were collected under canopies of C. ledifolius. Ectomycorrhizas were described by morphology and by DNA sequences of the ITS region. Host species were confirmed by rbcL sequences. ? Key results: Sixteen species of fungi were identified from ectomycorrhizas of Cercocarpus ledifolius. The ectomycorrhizal community was distinguished by the presence of a Geopora species situated in the G. arenicola clade and by the absence of Rhizopogon, suilloids, and Sebacinales. Of the species on C. ledifolius, two also occurred on trees of Quercus garryana var. breweri and four on Arctostaphylos sp. ? Conclusions: The presence of fungal species in common with other ectomycorrhizal hosts shows that C. ledifolius, Q. garryana var. breweri, and Arctostaphylos species could be linked by a mycorrhizal network, allowing them to exchange nutrients or to share inoculum for seedling roots and new fine roots. Single-host fungi limited to C. ledifolius may improve resource acquisition and reduce competition with other ectomycorrhizal hosts. The finding of a Geopora species as a frequent mycobiont of C. ledifolius suggests that this fungus might be appropriate for inoculating seedlings for habitat restoration.  相似文献   

16.
We investigated the diversity and community structure of ectomycorrhizal (EcM) fungi in Pinus thunbergii stands on the eastern coast of Korea. We established two 10 × 10-m plots in six forest stands and sampled soil blocks containing rootlets of mature P. thunbergii trees. EcM roots were classified into morphological groups, and the fungal taxa associated with each morphotype were identified by sequencing the nuclear rDNA internal transcribed spacer region. Cenococcum geophilum and the Atheliales, Clavulinaceae, Russulaceae and Thelephoraceae species were the main members of the EcM fungal community, which included a total of 68 observed fungal taxa. As a whole, the community consisted of a few dominant fungal taxa, such as C. geophilum (28.6% relative abundance), and a large number of rare fungal taxa that showed low abundances and local distributions. Colonization patterns at the local site scale and at the scale of the study plots greatly differed among the EcM fungal taxa; C. geophilum was distributed extensively and was dominant in several study sites, whereas a certain Lactarius sp. was distributed locally but dominated in a given study site. We conclude with a discussion of the relationship between colonization patterns of EcM fungi and soil and environmental conditions.  相似文献   

17.
We initiated a study of the effects of mycorrhizal fungal community composition on the restoration of tropical dry seasonal forest trees. Tree seedlings were planted in a severely burned experimental site (1995 fire) during the growing season of 1998 at the El Edén Ecological Reserve, in north Quintana Roo, Mexico. Seedlings of Leucaena leucocephala, Guazuma ulmifolia, Caesalpinia violacea, Piscidia piscipula, Gliricidia sepium, and Cochlospermum vitifolium were germinated in steam‐sterilized soil and either remained uninoculated (nonmycorrhizal at transplanting) or were inoculated with mycorrhizal fungi in soils from early‐seral (recently burned) or late‐seral (mature forest) inoculum. Inoculum from the early‐seral soil was largely Glomus spp., whereas a diverse community of arbuscular mycorrhizal fungi were reintroduced from the mature forest including species of Scutellospora, Gigaspora, Glomus, Sclerocystis, and Acaulospora. Plants grew better when associated with the mature forest inoculum, unlike a previous experiment in which plants grew taller with the early‐seral inoculum. Reasons for the different responses include a less‐intense burn resulting in more residual organic matter. In addition to mycorrhizal responses, plants were severely affected by deer browsing. One tree species, C. vitifolium found in the region but not in the reserve, was eliminated by a resident fungal facultative pathogen. Several practical conclusions for restoration can be made. The common nursery practice of soil sterilization may be detrimental because it eliminates beneficial mycorrhizal fungi; species not native to the site may not survive because they may not be adapted to the local pathogens; and herbivory can be severe depending on the landscape context of the restoration.  相似文献   

18.
Impaired ecosystems are converted back to natural ecosystems or some other target stage by means of restoration and management. Due to their agricultural legacy, afforested fields might be valuable compensatory habitats for rare fungal species that require nutrient‐rich forest soils. Using a large‐scale field experiment in Finland, we studied community composition of macrofungi (agarics and boletes) on former fields, which had been afforested as monocultures 20 years ago using native spruce Picea abies, pine Pinus sylvestris, and birch Betula pendula. We studied the effect of soil quality, tree species, and site on community composition and structure. Many nutrient‐demanding as well as rare fungal species were recorded, particularly from pine and spruce plots. Pine plots supported more nutrient‐demanding fungi than birch plots. There was no relationship between soil pH, bulk density, P, N, or Ca, and species richness of nutrient‐demanding fungi. Fungal community composition was more similar within sites than among sites for all tree species. Among sites, spruce plots had the smallest fungal species turnover, and birch plots largest. Within sites, however, fungal species turnover from plot to plot was similar among tree species. Our results indicate that tree species has a relatively mild influence on species composition of fungi after 20 years of succession. Interestingly, the results show that afforested fields can be valuable complementary habitats for rare, red‐listed, and nutrient‐demanding fungal species. Field afforestation is a potential conservation tool that could be used to complement the poor representation of rare habitat types in highly fragmented protected area networks.  相似文献   

19.
Interactions between host tree species and ectomycorrhizal fungi are important in structuring ectomycorrhizal communities, but there are only a few studies on host influence of congeneric trees. We investigated ectomycorrhizal community assemblages on roots of deciduous Quercus crassifolia and evergreen Quercus laurina in a tropical montane cloud forest, one of the most endangered tropical forest ecosystems. Ectomycorrhizal fungi were identified by sequencing internal transcribed spacer and partial 28S rRNA gene. We sampled 80 soil cores and documented high ectomycorrhizal diversity with a total of 154 taxa. Canonical correspondence analysis indicated that oak host was significant in explaining some of the variation in ectomycorrhizal communities, despite the fact that the two Quercus species belong to the same red oak lineage (section Lobatae ). A Tuber species, found in 23% of the soil cores, was the most frequent taxon. Similar to oak-dominated ectomycorrhizal communities in temperate forests, Thelephoraceae, Russulaceae and Sebacinales were diverse and dominant.  相似文献   

20.
1. Variation in spring phenology – like tree budburst – affects the structure of insect communities, but impacts of autumn phenology have been neglected. Many plant species have recently delayed their autumn phenology, and the timing of leaf senescence may be important for herbivorous insects. 2. This study explored how an insect herbivore community associated with Quercus robur is influenced by variation in autumn phenology. For this, schools were asked to record, across the range of oak in Sweden, the autumn phenology of oaks and to conduct a survey of the insect community. 3. To tease apart the relative impacts of climate from that of tree phenology, regional tree phenology was first modelled as a function of regional climate, and the tree‐specific deviation from this relationship was then used as the metric of relative tree‐specific phenology. 4. At the regional scale, a warmer climate postponed oak leaf senescence. This was also reflected in the insect herbivore community: six out of 15 taxa occurred at a higher incidence and five out of 18 taxa were more abundant, in locations with a warmer climate. Similarly, taxonomic richness and herbivory were higher in warmer locations. 5. Trees with a relatively late autumn phenology had higher abundances of leaf miners (Phyllonorycter spp.). This caused lower community diversity and evenness on trees with later autumn phenology. 6. The findings of the present study illustrate that both regional climate‐driven patterns and local variation in oak autumn phenology contribute to shaping the insect herbivore community. Community patterns may thus shift with a changing climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号