首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seed predation by rodents presents a significant barrier to native plant recruitment and can impede restoration seeding efforts. In nature, some plants contain secondary defense compounds that deter seed predators. If these natural defense compounds can be applied to unprotected seeds to inhibit rodent granivores, this approach could improve restoration seeding. Capsaicin is the active ingredient in chili pepper (Capsicum spp.) seeds that creates the burning sensation associated with human consumption of hot peppers. This compound has a similar effect on other mammals and is believed to have evolved as a deterrent to rodent seed predators. We used seed‐coating techniques to attach powder ground from Bhut Jolokia (Capsicum chinense) peppers to native plant seeds and evaluated the efficacy of these seed coatings for deterring rodent seed predation and enhancing native plant recruitment using laboratory and field experiments. Laboratory feeding trials demonstrated that native deer mice (Peromyscus maniculatus) consumed far fewer pepper‐coated seeds compared to untreated control seeds. Field seed‐addition experiments consistently demonstrated that rodent seed predation reduced native plant recruitment over the 4‐year study. Coating techniques used in the first 3 years were not persistent enough to reduce rodent seed predation effects on plant recruitment. However, a more persistent coating applied in conjunction with late‐winter sowing negated rodent seed predation effects on recruitment in year 4. Our results demonstrate that coating seeds with natural plant defense compounds may provide an effective, economical way to improve the efficacy of plant restoration by deterring seed predation by ubiquitous rodent granivores.  相似文献   

2.
Granivorous rodent populations in deserts are primarily regulated through precipitation‐driven resource pulses rather than pulses associated with mast‐seeding, a pattern more common in mesic habitats. We studied heteromyid responses to mast‐seeding in the desert shrub blackbrush (Coleogyne ramosissima), a regionally dominant species in the Mojave–Great Basin Desert transition zone. In a 5‐year study at Arches National Park, Utah, USA, we quantified spatiotemporal variation in seed resources in mast and intermast years in blackbrush‐dominated and mixed desert vegetation and measured responses of Dipodomys ordii (Ord's kangaroo rat) and Perognathus flavescens (plains pocket mouse). In blackbrush‐dominated vegetation, blackbrush seeds comprised >79% of seed production in a mast year, but 0% in the first postmast year. Kangaroo rat abundance in blackbrush‐dominated vegetation was highest in the mast year, declined sharply at the end of the first postmast summer, and then remained at low levels for 3 years. Pocket mouse abundance was not as strongly associated with blackbrush seed production. In mixed desert vegetation, kangaroo rat abundance was higher and more uniform through time. Kangaroo rats excluded the smaller pocket mice from resource‐rich patches including a pipeline disturbance and also moved their home range centers closer to this disturbance in a year of low blackbrush seed production. Home range size for kangaroo rats was unrelated to seed resource density in the mast year, but resource‐poor home ranges were larger (< 0.001) in the first postmast year, when resources were limiting. Blackbrush seeds are higher in protein and fat but lower in carbohydrates than the more highly preferred seeds of Indian ricegrass (Achnatherum hymenoides) and have similar energy value per unit of handling time. Kangaroo rats cached seeds of these two species in similar spatial configurations, implying that they were equally valued as stored food resources. Blackbrush mast is a key resource regulating populations of kangaroo rats in this ecosystem.  相似文献   

3.
Abstract: Red‐rumped agoutis (Dasyprocta leporina) are important seed dispersers/predators of Neotropical large‐seeded plants. Several species of seeds cached by agoutis have an edible reward, in contrast to temperate rodent‐dispersed diaspores. The quick meal hypothesis states that the presence of a reward such as edible pulp will enhance the efficiency of rodents as seed disperses by satiating the animal and, consequently, reducing seed predation and enhancing hoarding. In this study, this hypothesis was tested using as the reference system the pulp and seeds of Hymenaea courbaril. Seeds with and without pulp were offered to agoutis and the behaviour of each individual was recorded. Since the probability of predation and hoarding were complementary, we used the probability of predation. The proportion of agoutis that preyed on at least one seed was similar for seeds with (42.8% of individuals) and without (40.0% of individuals) pulp. In agoutis that preyed upon at least one seed, the probability that they killed a seed did not differ between seeds with (0.17 ± 0.03) and without (0.20 ± 0.08) pulp. Hence, these results do not support the ‘quick meal hypothesis’.  相似文献   

4.
Invasive rodent eradications are frequently undertaken to curb island biodiversity loss. However, the breadth of rodents’ ecological impact, even after eradication, is not always fully recognized. For example, the most widespread invasive rodent, the black rat (Rattus rattus), while omnivorous, eats predominantly seeds and fruit. Yet, the effects of seed predation release after eradication on plant communities and ecological functions are not well understood, posing a gap for island restoration. We examined the role of seed predation release following black rat eradication in changes to tree composition and aboveground biomass across an islet network (Palmyra Atoll) in the Central Pacific. We conducted repeated surveys of seed, juvenile, and adult tree biomass and survival in permanent vegetation plots before and after the eradication of rats. We observed a 95% reduction in seed predation for an introduced, previously cultivated tree population (Cocos nucifera). Juvenile tree biomass of all species increased 14‐fold, with C. nucifera increasing the most, suggesting that eradication increased this tree's competitive advantage. Indeed, based on stage‐structured demographic models, rat eradication led to a 10% increase in C. nucifera population growth rate. The effect of invasive rodent seed predation varies considerably among the plant species in a community and can shift competitive dynamics, sometimes in favor of invasive plants. These bottom‐up effects should be considered in evaluating the costs and benefits of eradication. Documenting the variation in invasive rodent diet items, along with long‐term surveys, can help prioritize island eradications where restoration is most likely to be successful.  相似文献   

5.
Post‐dispersal seed predation is a crucial phenomenon for plant recruitment, and its incidence can be hypothesized to increase in ecologically and geographically marginal populations of threatened species, such as yew (Taxus baccata). Here we examine the among‐ and within‐population patterns of seed consumption by rodents and evaluate to what extent they are linked to marginality in Mediterranean low‐density yew stands. Among populations we tested: (i) whether the rates of seed predation found in our marginal sites were consistently higher than in populations from core regions; (ii) within populations we evaluated whether rodents preferred microhabitats with greater seed availability (beneath female yew trees) or with lower predation risk (shrubs) in two seeding seasons (fall–winter 2005 and 2006). Predation rates were extremely high (92.5%) and they were well above values reported for core populations (65.4%), to the extent that rodents almost completely depleted the experimental seeds in all populations and years. Our expectation of lower predation rates with decreasing vegetation cover was also confirmed for all years and populations, suggesting that rodent foraging was risk‐sensitive. This microhabitat effect outweighed the effect of seed availability under female yew trees, implying also that rodents selectively consumed the most valuable seeds in terms of their recruitment prospects. Overall, our results suggest that the mechanisms underlying seed depletion and its demographic consequences are linked to the effects of reduced yew performance in ecologically marginal habitats.  相似文献   

6.
Post‐dispersal seed predation is a key process determining the variability in seed survival in forests, where most seeds are handled by rodents. Seed predation is thought to affect seedling regeneration, colonization ability and spatial distribution of plants. Basic seed traits are the essential factors affecting rodent foraging preferences and thus seed survival and seedling recruitment. Many studies have discussed several seed traits and their effects upon seed predation by rodents. However, the results of those previous studies are usually equivocal, likely because few seed traits and/or plant species tend to be incorporated into these studies. In order to elucidate the relationships between seed predation and seed traits, we surveyed the predation of 48 600 seeds in a natural pine forest, belonging to 30 species, for three consecutive years. The results demonstrated that: (i) seed size and seed coat hardness did not significantly affect seed predation; (ii) total phenolics had a negative effect upon seed predation; (iii) positive effects of nitrogen content upon seed predation were found. From our study, it seems that the better strategy to prevent heavy predation is for plants to produce seeds with higher total phenolics content rather than physical defenses (i.e. hard seed coat) or larger seeds. Additionally, rodent foraging preference may depend more on Nitrogen content than other nutrient content of seeds.  相似文献   

7.
High regeneration capacity helps tropical seeds to counter rodent predation   总被引:1,自引:0,他引:1  
Cao L  Xiao Z  Wang Z  Guo C  Chen J  Zhang Z 《Oecologia》2011,166(4):997-1007
Rapid germination of non-dormant seeds is one adaptation plants have evolved to counter seed predation by rodents. Some rodent species have evolved behaviors that prevent or slow the seed germination process through seed embryo removal or seed pruning; however, no plant species is known to have successfully escaped embryo removal or seed pruning by rodents. Here, we report that the non-dormant seeds of Pittosporopsis kerrii Craib in tropical rain forests in China have a high regeneration capacity to counter seed pruning by rodents. We found seed pruning, instead of embryo removal, was commonly used by rodents to increase food storage time by slowing down the seed germination process, but that P. kerrii seeds have a high regeneration capacity to escape seed predation by rodents: all pruned seeds, pruned roots and embryo-removed seeds by rodents or people retain the ability to develop into seedlings. Seeds of P. kerrii also have other capacities (i.e. rapid seed decomposition and indigestible dormant taproots) to escape predation by reducing the plant’s attractiveness to rodents. The association between seed pruning behavior in rodents and high regeneration capacity of pruned seeds or roots in P. kerrii seeds are likely novel adaptation strategies adopted by seeds and rodents, respectively.  相似文献   

8.
Nest predation is one of the most important drivers of avian life history evolution and population dynamics. Increasing evidence suggests that birds are able to assess nest predation risk and avoid settling in high‐risk areas to increase their reproductive performance. However, the cues used for settlement decisions are poorly known in most species. Population sizes of the migratory wood warbler Phylloscopus sibilatrix are characterized by strong annual fluctuations, which are negatively correlated with the number of forest rodents. Wood warblers might avoid rodent‐rich areas to reduce predation risk arising either from rodents, from rodent‐hunting predators attracted to such areas or from predators not linked to rodents. To evaluate these hypotheses, we conducted a large‐scale field experiment to test whether wood warblers avoided settling in plots with high predation risk simulated by broadcasting vocalizations of rodents or predators. Moreover, we tested whether reproductive performance varied in relation to simulated predation risk. Settlement patterns did not differ between plots with rodent, predator and noise control treatments. Likewise, measures of reproductive performance did not seem to differ across treatments. Thus, the broadcasted vocalizations of rodents and predators did not seem to be perceived as threat by wood warblers. Alternatively, the species might use other cues than those presented here, either other acoustic cues, visual and/or olfactory cues or a combination of cue types during settlement. Further experimental investigations to pin point cues and senses relevant for settlement decisions in wood warblers and birds in general are needed to better understand their life history and population dynamics.  相似文献   

9.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

10.
Barriers to establishing native plant communities on former pasture include dominance by a single planted species, hydrologic and edaphic alteration, and native species propagule limitation. Establishment may be dispersal‐limited (propagules do not arrive at the site), microsite‐limited (areas suitable for seedling emergence and survival do not exist), or both. Successful restoration strategies hinge on identifying and addressing critical limitations. We examined seed and microsite limitation to establishment of a native wildflower (Coreopsis lanceolata ) in a former pasture dominated by Paspalum notatum (bahiagrass). We determined the relative and interactive effects of microsite (irrigation and disturbance) and seed limitation on C. lanceolata establishment. We tested (1) irrigation (none, pre‐seeding, and pre‐ and post‐seeding), (2) disturbance (none, sethoxydim, glyphosate, and topsoil removal), and (3) C. lanceolata seeding rate (three seeding densities). Applying glyphosate before seeding increased C. lanceolata establishment compared to other disturbance treatments. Ultimately, C. lanceolata establishment was not affected by irrigation. Coreopsis lanceolata establishment was limited when seeded at 100 live seeds/m2 but not at 600 or 1100 live seeds/m2. Seed and microsite availability interactively affected C. lanceolata establishment, in that microsite limitation was biologically relevant only when a minimum number of seeds were present. In practice, both seed and microsite requirements must be met for successful establishment, and increasing the availability of seeds or microsites does not compensate for limitations of the other. Here, it is the relative importance of seed and microsite limitations that drives plant establishment; these limitations do not represent a simple dichotomy.  相似文献   

11.
Seeds of Indian ricegrass (Achnatherum hymenoides), a native bunchgrass common to sandy soils on arid western rangelands, are naturally dispersed by seed‐caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available on or beneath plants and recover most of their caches for consumption during the remainder of the year. Unrecovered seeds in caches account for the vast majority of Indian ricegrass seedling recruitment. We applied three different densities of white millet (Panicum miliaceum) seeds as “diversionary foods” to plots at three Great Basin study sites in an attempt to reduce rodents' over‐winter cache recovery so that more Indian ricegrass seeds would remain in soil seedbanks and potentially establish new seedlings. One year after diversionary seed application, a moderate level of Indian ricegrass seedling recruitment occurred at two of our study sites in western Nevada, although there was no recruitment at the third site in eastern California. At both Nevada sites, the number of Indian ricegrass seedlings sampled along transects was significantly greater on all plots treated with diversionary seeds than on non‐seeded control plots. However, the density of diversionary seeds applied to plots had a marginally non‐significant effect on seedling recruitment, and it was not correlated with recruitment patterns among plots. Results suggest that application of a diversionary seed type that is preferred by seed‐caching rodents provides a promising passive restoration strategy for target plant species that are dispersed by these rodents.  相似文献   

12.
Seed‐borne pathogenic fungi can cause serious damage to soybean crops by reducing the germination, vigour and emergence of the seeds. Special attention should be paid to pathogen detection in seeds to prevent its introduction in disease‐free areas. Considering the importance of rapid and successful diagnosis of seed‐borne pathogenic fungi in soybeans, this study evaluated a method to detect Sclerotinia sclerotiorum and Phomopsis spp. in seeds using quantitative polymerase chain reaction (qPCR). Naturally infested samples were subjected to detection using qPCR and blotter test, and the findings were compared. Using soybean seeds soaked in water, both pathogens were detected at an infestation level up a 0.0625% (one infected seed out of 1,599 healthy seeds) by qPCR. This technique allowed the detection of 300 fg of S. sclerotiorum and 30 fg of Phomopsis spp. DNA in the seed samples. Phomopsis spp. was detected in 40.7% of the evaluated seed batches (81 batches) and S. sclerotiorum was detected in 32.1% of the evaluated batches, although most of the seeds had low infestation levels. It was up to 28.5 times more efficient to use qPCR rather than blotter test to detect pathogens with a low incidence of occurrence in soybean seeds. If routinely used to test healthy seeds, qPCR would contribute to reducing soybean losses due to diseases as well as decreasing the costs required to control those diseases.  相似文献   

13.
Our aim was to assess the effect of environmental factors on short temporal abundance variations of the two most abundant native rodents of agricultural agroecosystems, Akodon azarae and Calomys laucha. We conducted a 3‐year longitudinal sampling of rodents, and recorded meteorological data such as temperature and precipitation, predation rate by Leopardus geoffroyi, Tyto furcata and Athene cunicularia, vegetation cover and height, characteristics of cropfields and their borders. The effect of these factors on rodent abundance was evaluated through generalized linear mixed models. Abundance variations of both rodent species were explained by characteristics of both cropfields and their borders. At the studied temporal scale, meteorological variables did not have a direct effect on abundance variations, but probably influenced through vegetation characteristics and were expressed in seasonal variations. For A. azarae there was also an effect of predation by L. geoffroyi (positive) and T. furcata (negative), while predation by A. cunicularia did not contribute to explain abundance variations of any species.  相似文献   

14.
Abstract. Question: The aim of the present study is to determine whether seed/seedling predation will increase and Fagus survival will decline with the recovery of the Sasa cover. Methods: We examined Fagus crenata regeneration for seven years in an old‐growth Fagus‐Sasa forest near Lake Towada, northern Japan, by examining the effects of simultaneous death of Sasa, tree canopy gap formation, mast seeding of Fagus and seed and seedling predation by rodents on the survival of Fagus seeds and current year seedlings. We established four types of sites differing in forest canopy (closed or gap) and Sasa status (dead or alive) following the simultaneous flowering and death of Sasa kurilensis (dwarf bamboo) in 1995. Results: Fallen Fagus seed was abundant in 1997 and 2000 (mast years). In sites with alive Sasa, survival from the first growing season was low due to high seed and seedling predation. In sites with dead Sasa, seed survival under the canopy was high for both mast years, but in gaps it varied between years. Seedling survival was highest in canopy gaps with dead Sasa (gap‐dead) in 1998, because of higher light levels and lower predation by rodents. However, seedling survival in these plots was low in 2001, apparently because rapid Sasa recovery favoured rodent predation. In both mast years, Sasa die‐back had significant positive effects on seed and seedling survival under closed canopies because the seedlings there were more successful in escaping predation. Conclusion: The change in successful sites for the early stage of regeneration of Fagus appears to reflect the combined effects of canopy gap, seed/seedling predation and revegetation of Sasa.  相似文献   

15.
Restoration of submerged aquatic vegetation from seed has been hampered by a lack of information on the appropriate conditions for collecting, processing, and storing seeds prior to dispersal. Seeds must be processed and stored under conditions that maintain seed viability, meet dormancy requirements, and prevent premature germination. This study examined the effects of collection date, processing technique, aeration, storage and induction temperature and salinity, and storage period on seed germination of two mesohaline aquatic species, Potamogeton perfoliatus and Ruppia maritima. Collection date and processing technique were significant factors affecting seed yield from donor populations. Seeds of both species remained viable and germinated best when stored at 4°C, and then exposed to freshwater induction conditions. However, their responses to other factors differed. Aeration during storage was necessary in order to maintain viability of P. perfoliatus seeds, whereas it was unnecessary for R. maritima seeds. Storage in freshwater at 4°C prevented germination of P. perfoliatus seeds, while high salinity during cold storage was necessary to minimize premature germination of R. maritima. Mean germination time of P. perfoliatus was dependent on storage salinity; in contrast, mean germination time of R. maritima seeds was dependent on induction salinity. These differences indicate that the methods required to produce large quantities of underwater plant seed amenable to large‐scale restoration efforts must be tailored to the specific requirements of individual species and must consider the range of processes from initial harvest through seed testing prior to field establishment.  相似文献   

16.
  • To determine seed removal influence on seed populations, we need to quantify pre‐ and post‐dispersal seed removal. Several studies have quantified seed removal in temperate American deserts, but few studies have been performed in tropical deserts. These studies have only quantified pre‐ or post‐dispersal seed removal, thus underestimating the influence of seed removal. We evaluated pre‐ and post‐dispersal seed removal in the columnar cactus Stenocereus stellatus in a Mexican tropical desert.
  • We performed selective exclosure experiments to estimate percentage of seeds removed by ants, birds and rodents during the pre‐ and post‐dispersal phases. We also conducted field samplings to estimate abundance of the most common seed removers.
  • Birds (10–28%) removed a higher percentage of seeds than ants (2%) and rodents (1–4%) during pre‐dispersal seed removal. Melanerpes hypopolius was probably the main bird removing seeds from fruits. Ants (62–64%) removed a higher percentage of seeds than birds (34–38%) and rodents (16–30%) during post‐dispersal seed removal. Pogonomyrmex barbatus was probably the main ant removing seeds from soil.
  • Birds and ants are the main pre‐ and post‐dispersal seed removers in S. stellatus, respectively. Further studies in other S. stellatus populations and plants with different life forms and fruit types will contribute to evaluate seed removal in tropical American deserts.
  相似文献   

17.
Forest rodents play an essential role as seed dispersal vectors through their caching behaviors. Using seeds of Quercus aliena, Q. glandulifera, and Cyclobalanopsis engleriana (Fagaceae), which are dominant, but poorly studied species, in the Qinling Mountains, Central China, we investigated seed predation and dispersal by forest rodents in 2010 and 2011. There were significant differences in rodent seed-eating and caching strategies among the three tree species. Seeds of Q. aliena and C. engleriana had hard coats, high nutrition contents (e.g., protein, fat, and starch), and long germination schedules (C. engleriana only). They were less frequently eaten in situ, but more likely to be eaten after removal or cached. Seeds of Q. glandulifera had soft coats and low nutrition contents and were more often eaten in situ and less likely to be eaten after removal or cached. Our findings indicated that forest rodents were primarily responsible for seed predation and dispersal of these three tree species in the Qinling Mountains, and seed traits, especially coat hardness, nutrition content, and germination schedule, were important factors influencing rodent eating and caching behaviors. In addition, seed dispersal process of each tree species differed significantly between the 2 years, reflecting the effect of mast seeding on the eating and caching strategies of forest rodents.  相似文献   

18.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers.  相似文献   

19.
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

20.
Seed predation is an important ecological and evolutionary force that directly affects the distribution of plant species. Copaifera langsdorffii is a tropical tree species with supra‐annual fruiting, which has its seeds predated by a specialist endogenous insect (Rynochenus brevicollis: Curculionidae) in the Brazilian savanna. Three hypotheses were addressed: (i) the predator satiation hypothesis, (ii) the resource concentration hypothesis and (iii) the larger seed predation hypothesis. A total of 112 individual C. langsdorffii were monitored monthly from January to August during four consecutive years (from 2008 to 2011) to determine the presence of fruits on each plant. All trees produced fruits in the year 2008, whereas none of them produced flowers or fruits in 2009 or 2010. Moreover, only 65 individuals (58%) marked in 2008 produced fruits in 2011. The number of fruits per plant was approximately 21% greater in 2008 than in 2011, while the percentage of seed predation was 76% greater in 2011, thereby supporting the predator satiation hypothesis. The percentage of seeds predated was not affected by the number of fruits per plant. Therefore, our data did not support the resource concentration hypothesis. Plants producing large seeds experienced more seed predation by R. brevicollis, supporting the larger seed predation hypothesis. In addition, we also observed a positive relationship between seed volume and adult R. brevicollis weight. This study demonstrates the importance of supra‐annual fruiting for increasing survivorship of C. langsdorffii seeds both at the individual and the population level, and suggests that seed predators select plants producing large seeds as a way of increasing the number of offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号