首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. Recent molecular data suggest that the Porifera is paraphyletic (Calcarea+Silicea) and that the Calcarea is more closely related to the Metazoa than to other sponge groups, thereby implying that a sponge‐like animal gave rise to other metazoans. One ramification of these data is that calcareous sponges could provide clues as to what features are shared among this ancestral metazoan and higher animals. Recent studies describing detailed morphology in the Calcarea are lacking. We have used a combination of microscopy techniques to study the fine structure of Syconcoactum Urban 1905, a cosmopolitan calcareous sponge. The sponge has a distinct polarity, consisting of a single tube with an apically opening osculum. Finger‐like chambers, several hundred micrometers in length, form the sides of the tube. The inner and outer layers of the chamber wall are formed by epithelia characterized by apical–basal polarity and occluding junctions between cells. The outer layer—the pinacoderm—and atrial cavity are lined by plate‐like cells (pinacocytes), and the inner choanoderm is lined by a continuous sheet of choanocytes. Incurrent openings of the sponge are formed by porocytes, tubular cells that join the pinacoderm to the choanoderm. Between these two layers lies a collagenous mesohyl that houses sclerocytes, spicules, amoeboid cells, and a progression of embryonic stages. The morphology of choanocytes and porocytes is plastic. Ostia were closed in sponges that were vigorously shaken and in sponges left in still water for over 30 min. Choanocytes, and in particular collar microvilli, varied in size and shape, depending on their location in the choanocyte chamber. Although some of the odd shapes of choanocytes and their collars can be explained by the development of large embryos first beneath and later on top of the choanocytes, the presence of many fused collar microvilli on choanocytes may reflect peculiarities of the hydrodynamics in large syconoid choanocyte chambers. The unusual formation of a hollow blastula larva and its inversion through the choanocyte epithelium are suggestive of epithelial rather than mesenchymal cell movements. These details illustrate that calcareous sponges have characteristics that allow comparison with other metazoans—one of the reasons they have long been the focus of studies of evolution and development.  相似文献   

2.
Sponges (phylum Porifera) are early-branching animals, whose outwardly simple body plan is underlain by a complex genetic repertoire. The transition from a mobile larva to an attached filter-feeding organism occurs by metamorphosis, a process accompanied by a radical change of the body plan and cell transdifferentiation. The continuity between larval cells and adult tissues is still obscure. In a previous study, we have produced polyclonal antibodies against the major protein of the flagellated cells covering the larva of the sponge Halisarca dujardini, used them to trace the fate of these cells and shown that the larval flagellated cells transdifferentiate into the choanocytes. In the present work, we identified the sequence of this novel protein, which we named ilborin. A search in the open databases showed that multiple orthologues of the newly identified protein are present in sponges, cnidarians, flatworms, ctenophores and echinoderms, but none of them has been described yet. Ilborin has two conserved domains: triosephosphate isomerase-barrel, which has enzymatic activity against macroergic compounds, and canonical EF-hand, which binds calcium. mRNA of ilborin is expressed in the larval flagellated cells. We suggest that the new protein is involved in the calcium-mediated regulation of energy metabolism, whose activation precedes metamorphosis.  相似文献   

3.
This study investigated the development of the larvae of Spongia officinalis in experimental conditions, after settlement on plastic substrates, using electron and light microscopy. The released larvae show a dark pigmented ring distinguishes the posterior larval pole. The youngest larvae, covered with a flagellate epithelium, move onwards by rotating on their longitudinal axis. Over time a creeping-like motion prevails, probably linked to the need for settlement. After a free-swimming period of 24-48 h, larvae settle on the artificial substrate by the anterior pole. At settlement, the flagellate epithelium is substituted by flattened cells, which delimit the outermost surface. Post-larvae were reared to about three months. The early phase of post-larval differentiation shows a solid interior mainly consisting of granular cells varying in shape and size. They are included in a dense collagen matrix that contains a conspicuous amount of bacteria. Lacunae are already evident in the initial phase of metamorphosis. In several of them, cell debris and nucleate cells are visible. This feature is consistent with a progressive reduction of the cell mass (autolysis). Neither choanocyte chambers nor canals differentiate. The morphogenetic process leads to a metamorph only consisting of vacuolated cells and collagen fibrils included in a thin fibrous coat.  相似文献   

4.
Oogenesis and embryonic development in the marine sponge, Haliclona ecbasis, were studied using standard histological procedures. When the oocytes reach a diameter of about 30 μ, nurse cells begin to aggregate around them. Then when the oocytes are about 36 μ in diameter, they begin to engulf the associated nurse cells. Whole nurse cells are engulfed; and although the nucleus of the nurse cells disappears either as or soon after the cells are engulfed, the cytoplasm remains essentially unchanged. The accumulation of these cells within the oocytes most of the cytoplasm is nurse cell cytoplasm. During cleavage of the egg, the engulfed nurse cells are gradually fragmented, but otherwise appear unchanged. At the same time the cytoplasm of the nurse cells is progressively incorporated into that of the blastomeres by what appears to be fusion process. When the latter process is complete, the embryo develops into a typical parenchymula larva.  相似文献   

5.
Vernalized gemmules of the marine sponge Haliclona loosanoffi were cultured at 20°C, fixed at 24-hour intervals (0–11 days), and processed for light microscopy by using a variety of absorption and fluorescent staining methods. The cytochemistry and morphology of development were compared to the well-studied developmental patterns of freshwater sponges and to the patterns described in the marine sponge Suberites domuncula. The precocious development of H. loosanoffi gemmules involves early morphogenesis occurring within the unhatched gemmule, as opposed to the patterns in freshwater sponges, where most development occurs after the gemmule hatches. Definitive sponge tissue surrounding a single osculum is present 9 days after release from dormancy.  相似文献   

6.
The aim of this paper was (1) to update sponge diversity and distribution in the Mediterranean and (2) to re-examine faunal relationships among the Mediterranean areas on the basis of their sponge fauna. The Mediterranean demosponge faunal list was updated to 629 species by taking into consideration recent data from previously poorly studied areas. The species lists of 14 Mediterranean areas were compared on the basis of their sponge species richness, species composition, and taxonomic relatedness of species using multivariate analyses and diversity measures, such as PD, Delta+, and Lambda+. The 14 Mediterranean areas examined for their diversity and affinities were assembled into four major zoogeographic groups: the northwestern, northeastern, the central zone, and southeastern areas. Richest in species numbers were the areas belonging to the two northern groups. The species richness comparisons and similarity analyses performed at the generic level showed that it can be safely used as a surrogate for sponge species diversity in the Mediterranean. The results of this study showed that the simple traditional division of the Mediterranean Sea into a western, central, and eastern basin cannot reliably describe the distribution of sponges in the area. Thus, the W to E faunal decline previously presented for several faunal groups shifts to a general NNW-SSE pattern when one examines separately the northern and the southern parts of the traditional basins. This gradient seems to be in agreement with differences in key environmental variables, such as latitude, salinity, temperature, and water circulation, besides the typically examined distance from Gibraltar. Handling editor: T. P. Crowe  相似文献   

7.
Sponges branch basally in the metazoan phylogenetic tree and are believed to be composed of four distinct lineages with still uncertain relationships. Indeed, some molecular studies propose that Homoscleromorpha may be a fourth Sponge lineage, distinct from Demospongiae in which they were traditionally classified. They harbour many features that distinguish them from other sponges and are more evocative of those of the eumetazoans. They are notably the only sponges to possess a basement membrane with collagen IV and specialized cell‐junctions, thus possessing true epithelia. Among Homoscleromorphs, we have chosen Oscarella lobularis as a model species. This common and easily accessible sponge is characterized by relatively simple histology and cell composition, absence of skeleton, and strongly pronounced epithelial structure. In this review, we explore the specific features that make O. lobularis a promising homoscleromorph sponge model for evolutionary and developmental researches.  相似文献   

8.
The Caribbean sponge Mycale laevis is often found growing in close proximity to living scleractinian corals. This commonly observed sponge–coral association has been considered a mutualism, with the coral providing substratum for the sponge, and the sponge protecting the coral skeleton from boring organisms. We examined the specificity of sponge recruitment to live corals, expecting a positive and specific settlement response if a mutualism exists. Benthic surveys conducted off Key Largo, Florida, and Bocas del Toro, Panama, revealed that individuals of M. laevis grew on substrata that included dead coral and other species of sponges. Selectivity analysis indicated that at three of the four survey sites, M. laevis was not randomly distributed, but associated with live corals more frequently than expected from proportional coral cover. However, settlement assays demonstrated that larvae of M. laevis did not preferentially respond to the presence of live coral. We have previously demonstrated that adults of M. laevis are chemically undefended and readily eaten by spongivorous fishes unless protected by adjacent substrata such as live corals. In overfished areas, where spongivore density is low, the sponge is not selectively distributed near corals. Initial results of settlement experiments with different substrata suggested that larvae of M. laevis responded positively to the presence of the chemically defended sponge Amphimedon compressa, perhaps indicating an associational defense. Further experiments revealed that larvae were reacting to artificially high concentrations of exudates from cut surfaces of Am. compressa; settlement was not enhanced in response to healed pieces of Am. compressa. In addition, the larvae of M. laevis did not selectively respond to live coral or to chemically defended heterospecifics. These results indicate that the commonly observed proximity of M. laevis to live corals is not driven by larval settlement behavior, but instead by post‐settlement mortality due to predation.  相似文献   

9.
Larval transfer is presented as an alternative to the widely held assumption that larvae and corresponding adults have always evolved together, within the same lineage. I submit (1) that genes specifying the basic forms of all embryos and larvae originated as the genomes of animals that matured without metamorphosis, (2) that such genomes have been transferred by hybridization, and (3) that fertile hybrids have been produced at infrequent and irregular intervals between animals at all levels of relationship during the course of evolution. The origins of blastulas, hydromedusae, protostome and deuterostome ciliated larvae, arthropodan larvae and urochordate tadpoles are discussed as examples of my hypothesis. I believe that practically all metazoans have at least one inter-group hybrid in their ancestry. Larval transfer is briefly considered in relation to other theories on ontogeny and phylogeny. Methods of verification are suggested.  相似文献   

10.
11.
Thiyagarajan V  Qian PY 《Proteomics》2008,8(15):3164-3172
The barnacle, Balanus amphitrite, is one of the primary model organisms for rocky-shore ecology studies and biofouling research. This barnacle species has a complex life cycle during which the swimming nauplius molts six times and transforms into a cyprid stage. Cyprids must attach to a surface to metamorphose into a juvenile barnacle. To clarify the overall profile of protein expression during larval development and metamorphosis, 2-DE was used to compare the proteome of the nauplius, the swimming cyprid, the attached cyprid, and the metamorphosed cyprid. The proteome of the swimming cyprid was distinctly different from that of other life stages and had about 400 spots. The proteomes of the attached and metamorphosed cyprids were similar with respect to major proteins but had significantly lower numbers of spots compared to that of swimming larval stages. Obviously, synthesis of most proteins from swimming cyprids was switched off after attachment and metamorphosis. Our advanced MS analysis (MALDI-TOF/TOF MS/MS) allowed us to identify the proteins that were differentially and abundantly expressed in the swimming cyprid. These proteins included signal transduction proteins (adenylate cyclase and calmodulin) and juvenile hormone binding proteins. In summary, for the first time, we have analyzed the global protein expression pattern of fouling marine invertebrate larvae during metamorphosis. Our study provides new insights into the mechanisms of barnacle larval metamorphosis and also provides a foundation for exploring novel targets for antifouling treatments.  相似文献   

12.
Various large‐scale behaviors (e.g., locomotion, shape changes, contractions) have been documented numerous times in intact sponges of the class Demospongiae. However, little is known about such motile events in calcareous sponges (Class Calcarea). Here, we report on whole‐sponge behaviors of the calcareous asconoid sponge Leucosolenia botryoides, as revealed by time‐lapse videos. These behaviors included locomotion and contraction. Locomotion in these sponges appeared as an outward movement (25–130 μm h?1) of the asconoid tubes away from the sponge's center; such translocations were always accompanied by extensive movements of protruding spicules, which appear to act as anchoring hooks for the sponge's translocations. This is the first report of whole‐sponge locomotion in the Calcarea. Contractile waves also were propagated in these sponges at speeds of 50–150 μm h?1, and they involved systemic contraction, then re‐extension of the asconoid tubes. The observations suggest that, like the more complex demosponges, these simple calcareous sponges are capable of adaptive whole‐animal behaviors (changes in flow, shape, and location), which occur in response to environmental stimuli such as crawling intruders.  相似文献   

13.
14.
Carnivorous sponges characteristically inhabit the deep sea, so extensive observations of the biology of living specimens are rare. We report on newly discovered shallow‐water (<30 m depth) populations of the carnivorous sponge Asbestopluma occidentalis and on observations of living adults and larvae from this unique group of sponges. In the Salish Sea, British Columbia, Canada, populations of A. occidentalis exist at depths as shallow as 18 m, where they co‐occur with hexactinellid sponges. Adults with and without embryos (n =127) were collected and easily maintained in the laboratory for several months, allowing continuous examination of live specimens. Parent sponges naturally disassociated their tissue, facilitating larval release and dispersal. Dispersed larvae had actively beating cilia, but no swimming was observed. Larvae settled and attached from several hours to several days post‐release. After larval release, parent sponges reaggregated their disassociated bodies into spherical balls of apparently undifferentiated tissue, which could also disperse and settle. Sexually mature adults were sampled in the field from August to November, with a high proportion of adults containing mature embryos in late November. High‐resolution photography and electron microscopy verified that adults were covered with anisochelae spicules, and used these to capture nauplii of Artemia sp. under experimental conditions; however, time‐lapse photography showed that some captured prey could free themselves with vigorous swimming. The occurrence of abundant shallow‐water populations of A. occidentalis in the Salish Sea provides a rare opportunity to study the evolution and ecology of carnivory in the Porifera.  相似文献   

15.
饵料对河蟹溞状幼体变态发育的影响   总被引:2,自引:0,他引:2  
尹绍武  王德安 《生态学报》2003,23(4):725-730
报道饵料对河蟹状幼体 ( Z1~ Z3)变态的影响。结果表明 :梅尼小环藻是 Z1的适口饵料 ,适量投喂浓度为 80万个 /ml至 1 0 0万个 /ml;投喂衣藻或小环藻与衣藻的等浓度混合饵料都不能使 Z1顺利变态为 Z2 。2 0个 /ml褶皱臂尾轮虫密度是适于 Z2 的饵料密度 ,轮虫密度低于 5个 /ml或高于 40个 /ml都对 Z2 的变态有不良影响。另外 ,投喂 60万个 /ml小环藻加 2 0个 /ml轮虫混合饵料对 Z2 变态发育更为有利 ;而用 2 0万个 /ml衣藻加 2 0个 /ml轮虫投喂 Z2 ,却使 Z2 的变态率明显降低。 30个 /ml轮虫密度是适于 Z3的饵料密度 ,轮虫密度低于 2 0个 /ml或高于 40个 /ml都会对 Z3变态产生不良影响。  相似文献   

16.
The cyanobacterial symbionts of the marine sponge Chondrilla australiensis (Demospongiae) were examined using fluorescent microscopy and Transmission Electron Microscopy. Unicellular cyanobacteria with ultrastructure resembling Aphanocapsa feldmannii occur in the cortex and bacterial symbionts are located throughout the mesohyl. In C. australiensis, the developing eggs are distributed throughout the mesohyl and are surrounded by nurse cells attached to them by thin filaments. The nurse cells form cytoplasmic bridges with the eggs, apparently releasing their contents into the egg cytoplasm. The presence of cyanobacterial and bacterial symbionts inside developing eggs and nurse cells in 25% of female Chondrilla australiensiswas established using Transmission Electron Microscopy, suggesting that these symbionts are sometimes passed on to the next generation of sponges via the eggs.  相似文献   

17.
The sterol content of the marine sponge Crambe crambe has been determined. The major components of the mixture are cholest-7-en3β-ol, 24-methylcholesta-7,22-dien-3β-ol and cholesta-7,22-dien-3β-ol. Significative quantities of the rare 4α-methyl-5α-cholest-8-en3β-ol are also present.  相似文献   

18.

Silicified trilobite faunas yield a well preserved and abundant record of early development in many taxa. Although their morphologies are well known, protaspid larvae are poorly understood in terms of trilobite life history and developmental biology. Two distinct morphologic types are recognized among the great diversity of protaspides studied; these are termed adult‐like and nonadult‐tike according to gross similarity to later developmental stages. Transitions between nonadult‐like and adult‐like morphologies are abrupt, occurring between successsive instars, and, thereby, constitute metamorphoses.

By analogy with developmental patterns among modern marine arthropod taxa, metamorphoses during early trilobite ontogeny correspond to radical modifications in life mode and ecology. Adult‐like trilobite protaspides possess a dorso‐ventrally flattened tergum which displays a coarsely featured prosopon and surface‐parallel spines; these are interpreted as benthic larvae. In contrast, nonadult‐like protaspid larvae display an ovoid to spheroidal shape with spine pairs that project at right angles to one another; these are considered to have been planktonic. Protaspid morphologies are compared and discussed in light of these inferred modes of life.  相似文献   

19.
Lake Baikal harbors the largest diversity of sponge species [phylum Porifera] among all freshwater biotopes. The abundantly occurring species Lubomirskia baicalensis was used to study the seasonal silicatein metabolism; the spicules of this species have an unusually thick axial filament, consisting of silicatein, which remains constant in diameter during their growth. In the course of maturation, the size of the silicic acid shell grows, until the final diameter of the spicules of about 8 microm is reached. The seasonal content of silicatein was assessed by use of antibodies raised against silicatein; they stained specifically the axial filaments. In addition we determined, by application of the enzyme-linked immunosorbent assay system, that the proteinaceous content of the spicules, the silicatein, increases from spring to late summer by 8-fold. As molecular markers to quantify the seasonal changes in expression levels of genes coding for proteins/enzymes, the genes for the calumenin-like protein and the kinesin-related protein, were selected. The expression of calumenin-like gene, involved in the intracellular signaling, is highest during September, whereas the expression of the kinesin-related protein does not change during the annual course. These results suggest that the highest metabolic activity of L. baicalensis occurs in late summer (September), in parallel with the highest accumulation of silicatein, a structural protein/enzyme of the spicules.  相似文献   

20.
Cliona delitrix is a very destructive coral-excavating sponge in Caribbean coral reef systems, particularly for Montastraea species. Little is known about how these excavating sponges propagate across coral reefs. In this study a hypothesis was tested that coral breakage caused by the bioeroding activity facilitates the asexual propagation of this sponge and in turn favors the spread of the most aggressive sponge genotypes. An allozyme analysis, involving 12 loci systems of 52 sponge individuals from a total of 13 Montastraea heads, found that no two sponges possessed identical multi-locus genotypes. Contrary to the pattern expected for fragmenting species, the incidence of clonality and asexual propagation at the population level was minimal. The lack of correlation between genetic and physical distances for the studied sponges also suggests that population maintenance appears to derive from larval dispersal, with a spatial range of dispersal larger than the average distance between the coral heads (10–102 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号