首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Mitonuclear discordance is a frequently encountered pattern in phylogeographic studies and occurs when mitochondrial and nuclear DNA display conflicting signals. Discordance among these genetic markers can be caused by several factors including confounded taxonomies, gene flow, and incomplete lineage sorting. In this study, we present a strong case of mitonuclear discordance in a species complex of toads (Bufonidae: Incilius coccifer complex) found in the Chortís Block of Central America. To determine the cause of mitonuclear discordance in this complex, we used spatially explicit genetic data to test species limits and relationships, characterize demographic history, and quantify gene flow. We found extensive mitonuclear discordance among the three recognized species within this group, especially in populations within the Chortís Highlands of Honduras. Our data reveal nuclear introgression within the Chortís Highlands populations that was most probably driven by cyclical range expansions due to climatic fluctuations. Though we determined introgression occurred within the nuclear genome, our data suggest that it is not the key factor in driving mitonuclear discordance in the entire species complex. Rather, due to a lack of discernible geographic pattern between mitochondrial and nuclear DNA, as well as a relatively recent divergence time of this complex, we concluded that mitonuclear discordance has been caused by incomplete lineage sorting. Our study provides a framework to test sources of mitonuclear discordance and highlights the importance of using multiple marker types to test species boundaries in cryptic species.  相似文献   

2.
Introgression and incomplete lineage sorting (ILS) are two of the main sources of gene‐tree incongruence; both can confound the assessment of phylogenetic relationships among closely related species. The Triatoma phyllosoma species group is a clade of partially co‐distributed and cross‐fertile Chagas disease vectors. Despite previous efforts, the phylogeny of this group remains unresolved, largely because of substantial gene‐tree incongruence. Here, we sequentially address introgression and ILS to provide a robust phylogenetic hypothesis for the T. phyllosoma species group. To identify likely instances of introgression prior to molecular scrutiny, we assessed biogeographic data and information on fertility of inter‐specific crosses. We first derived a few explicit hybridization hypotheses by considering the degree of spatial overlap within each species pair. Then, we assessed the plausibility of these hypotheses in the light of each species pair's cross‐fertility. Using this contextual information, we evaluated mito‐nuclear (cyt b, ITS‐2) gene‐tree incongruence and found evidence suggesting introgression within two species pairs. Finally, we modeled ILS using a Bayesian multispecies coalescent approach and either (a) a “complete” dataset with all the specimens in our sample, or (b) a “filtered” dataset without putatively introgressed specimens. The “filtered tree” had higher posterior‐probability support, as well as more plausible topology and divergence times, than the “complete tree.” Detecting and filtering out introgression and modeling ILS allowed us to derive an improved phylogenetic hypothesis for the T. phyllosoma species group. Our results illustrate how biogeographic and ecological‐reproductive contextual information can help clarify the systematics and evolution of recently diverged taxa prone to introgression and ILS.  相似文献   

3.
Mating systems are among the most labile characteristics of flowering plants, with transitions frequently occurring among populations or in association with speciation. The frequency of mating system shifts has made it difficult to reconstruct historical evolutionary dynamics unless transitions have been very recent. Here, we examine molecular and phenotypic variation to determine the polarity, timescale, and causes of a transition between outcrossing and self-fertilization in sister subspecies of Clarkia xantiana. Phylogenetic analyses and coalescent-based estimates of the time to most recent common ancestor indicated that outcrossing is ancestral to selfing and that there has been a single origin of selfing. Estimates of divergence time between outcrossing and selfing subspecies were 10,000 (95% CI [credible interval]: 3169-66,889) and 65,000 years ago (95% CI: 33,035-151,448) based on two different methods, suggesting a recent and rapid evolutionary transition. Population genetic data indicated that the transition to selfing was associated with a 80% reduction in molecular diversity, which is much greater than the 50% reduction expected under a shift from obligate outcrossing to obligate self-fertilization alone. Our data also suggest that this severe loss of diversity was caused by colonization bottlenecks. Together with previous studies, evidence for reproductive assurance in C. xantiana now connects variation in plant-pollinator interactions in the field to phenotypic and molecular evolution.  相似文献   

4.
We fit a molecular data set, consisting of the rpL16 cpDNA marker and eight microsatellite loci, to the isolation-with-migration model as implemented in IM a to test a well-supported phylogenetic hypothesis of relationships within the Carex macrocephala species complex (Cyperaceae). The phylogenetic hypothesis suggests C. macrocephala from North America is reciprocally monophyletic and is sister to a reciprocally monophyletic clade of C. kobomugi . The North American C. macrocephala and C. kobomugi clade form a sister clade with a lineage of Asian C. macrocephala , thereby forming a paraphyletic C. macrocephala species. Not only does the phylogenetic hypothesis suggest C. macrocephala is paraphyletic, but it also suggests that the two lineages which share a partially overlapping distribution, Asian C. macrocephala and C. kobomugi , are not the most closely related. To test these relationships, we used coalescent-based population genetic models to infer divergence time for each lineage pair within the species complex. The coalescent-based models account for the stochastic forces which drive population divergence, and can account for the lineage sorting that occurs prior to lineage divergence. A drawback to phylogenetic-based phylogeographical analyses is that they do not account for stochastic lineage sorting that occurs between gene divergence and lineage divergence. By comparing the relative divergence time of the three main lineages within this group, Asian C. macrocephala , North American C. macrocephala , and C. kobomugi , we concluded that the phylogenetic hypothesis is incorrect, and the divergence between these lineages occurred during the Late Pleistocene epoch.  相似文献   

5.
The study of reproductive isolation and species barriers frequently focuses on mitochondrial genomes and has produced two alternative and almost diametrically opposed narratives. On one hand, mtDNA may be at the forefront of speciation events, with co‐evolved mitonuclear interactions responsible for some of the earliest genetic incompatibilities arising among isolated populations. On the other hand, there are numerous cases of introgression of mtDNA across species boundaries even when nuclear gene flow is restricted. We argue that these seemingly contradictory patterns can result from a single underlying cause. Specifically, the accumulation of deleterious mutations in mtDNA creates a problem with two alternative evolutionary solutions. In some cases, compensatory or epistatic changes in the nuclear genome may ameliorate the effects of mitochondrial mutations, thereby establishing coadapted mitonuclear genotypes within populations and forming the basis of reproductive incompatibilities between populations. Alternatively, populations with high mitochondrial mutation loads may be rescued by replacement with a more fit, foreign mitochondrial haplotype. Coupled with many nonadaptive mechanisms of introgression that can preferentially affect cytoplasmic genomes, this form of adaptive introgression may contribute to the widespread discordance between mitochondrial and nuclear genealogies. Here, we review recent advances related to mitochondrial introgression and mitonuclear incompatibilities, including the potential for cointrogression of mtDNA and interacting nuclear genes. We also address an emerging controversy over the classic assumption that selection on mitochondrial genomes is inefficient and discuss the mechanisms that lead lineages down alternative evolutionary paths in response to mitochondrial mutation accumulation.  相似文献   

6.
The genetic divergence between two closely related rockfishes, Sebastes longispinis and Sebastes hubbsi, was inferred from both mitochondrial DNA (mtDNA) sequence variations and amplified fragment length polymorphism (AFLP) markers. The two species were placed into two distinct clades in a neighbour-joining tree based on the AFLP data, clearly indicating that they represented separate species. Although this evidence, together with a previous morphological study, revealed clear differences between the two species, no obvious clustering of haplotypes by species was detected in the minimum spanning network inferred from sequence variations in the mtDNA control region (c. 500 base pairs). In fact, the significant Φ(ST) estimates indicated only a restriction of gene flow between the two species. Uncorrected pairwise sequence differences in mtDNA between two species were small (1·8% at maximum, on the lower end of the range of control region divergence between previously studied sister species pairs), suggesting their speciation event as having been fairly recent. The incongruent results of AFLP and mtDNA phylogenies suggested incomplete lineage sorting and introgression of mtDNA in the course of the evolution of the two species. Differences in their main distributional ranges and the small level of sequence divergence in mtDNA suggests that speciation and dispersal may have been associated with glacio-eustatic sea level fluctuations between the Japanese Archipelago and the Korean Peninsula during the past 0·4 million years.  相似文献   

7.
The geographic distribution of phenotypic variation among closely related populations is a valuable source of information about the evolutionary processes that generate and maintain biodiversity. Leapfrog distributions, in which phenotypically similar populations are disjunctly distributed and separated by one or more phenotypically distinct populations, represent geographic replicates for the existence of a phenotype, and are therefore especially informative. These geographic patterns have mostly been studied from phylogenetic perspectives to understand how common ancestry and divergent evolution drive their formation. Other processes, such as gene flow between populations, have not received as much attention. Here, we investigate the roles of divergence and gene flow between populations in the origin and maintenance of a leapfrog distribution in Phyllobates poison frogs. We found evidence for high levels of gene flow between neighbouring populations but not over long distances, indicating that gene flow between populations exhibiting the central phenotype may have a homogenizing effect that maintains their similarity, and that introgression between ‘leapfroging’ taxa has not played a prominent role as a driver of phenotypic diversity in Phyllobates. Although phylogenetic analyses suggest that the leapfrog distribution was formed through independent evolution of the peripheral (i.e. leapfrogging) populations, the elevated levels of gene flow between geographically close populations poise alternative scenarios, such as the history of phenotypic change becoming decoupled from genome‐averaged patterns of divergence, which we cannot rule out. These results highlight the importance of incorporating gene flow between populations into the study of geographic variation in phenotypes, both as a driver of phenotypic diversity and as a confounding factor of phylogeographic inferences.  相似文献   

8.
In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda‐shelf shallow seas in Island South‐East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology, 14 , 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood‐based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda‐shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D‐statistics which are uninformative about the direction of admixture.  相似文献   

9.
Alpine species often have similar demographic responses to Pleistocene climate changes, but exhibit different spatial patterns of genetic diversity. Using a comparative phylogeographical approach, we examined the factors influencing lineage formation in three alpine carabid beetles of the genus Nebria Latreille inhabiting the California Sierra Nevada. These flightless beetles differ in altitudinal zonation and habitat preferences, but overlap spatially, have limited dispersal capacities and share life history characteristics. Species distribution modelling predicted decreasing population connectivity in relation to increasing altitudinal preferences. Diversity patterns at the cytochrome oxidase subunit I gene revealed north–south genetic structure and recent population growth in all three species. The high‐elevation‐restricted species, Nebria ingens Horn, exhibited a deep phylogeographical split, morphological divergence and evidence of limited, unidirectional gene flow towards the south. This was supported by additional data from three nuclear genes and isolation with migration analysis. Nebria spatulata Van Dyke, inhabiting an intermediate altitudinal range, exhibited fixed morphological differences between northern and southern populations, but showed limited structure. The broadly distributed Nebria ovipennis LeConte showed less structure and lacked morphological variation. Diversification of these Nebria species supports the role of altitudinal zonation in lineage formation and is consistent with the Pleistocene species pump model. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

10.
11.
As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well‐studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller‐scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management.  相似文献   

12.
Phylogenies indicate that the transition from outcrossing to selfing is frequent, with selfing populations being more prone to extinction. The rates of transition to selfing and extinction, acting on different timescales, could explain the observed distributions of extant selfing species among taxa. However, phylogenetic and theoretical studies consider these mechanisms independently, that is transitions do not cause extinction. Here, we theoretically explore the demographic consequences of the evolution of self‐fertilization. Deleterious mutations and mutations modifying the selfing rate are recurrently introduced and the number of offspring depends on individual fitness, allowing for a demographic feedback. We show that mutational meltdowns can be triggered in populations evolving near strict selfing. Populations having survived a demographic crash are more stable than ancestral outcrossing populations once deleterious mutations are purged. The relatively rapid time‐scales at which extinctions occur indicate that during evolutionary transitions the accumulation of deleterious mutations may not be the cause of extinctions observed on longer time scales, but could lead to the underestimation of transition rates from outcrossing to selfing.  相似文献   

13.
Extensive bioinformatics analysis suggests that the stability and function of protein complexes are maintained throughout evolution by coordinated changes (co‐evolution) of complex subunits. Yet, relatively little is known regarding the actual dynamics of such processes and the functional implications of co‐evolution within protein complexes, since most of the bioinformatics predictions were not analyzed experimentally. Here, we describe a systematic experimental approach that allows a step‐by‐step observation of the co‐evolution process in protein complexes. The exosome complex, an essential complex exhibiting a 3′→5′ RNA degradation activity, served as a model system. In this study, we show that exosome subunits diverged very early during fungal evolution. Interestingly, we found that despite significant differences in conservation between Rrp41 and Mtr3 both subunits exhibit similar divergence pattern and co‐evolutionary behavior through fungi evolution. Activity analysis of mutated exosomes exposes another layer of co‐evolution between the core subunits and RNA substrates. Overall, our approach allows the experimental analysis of co‐evolution within protein complexes and together with bioinformatics analysis can significantly deepen our understanding of the evolution of these complexes. Proteins 2013; 81:1997–2006. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Aim The genetic impact of Quaternary climatic fluctuations on mountain endemic species has rarely been investigated. The Pyrenean rock lizard (Iberolacerta bonnali) is restricted to alpine habitats in the Pyrenees where it exhibits a highly fragmented distribution between massifs and between habitats within massifs. Using mitochondrial DNA markers, we set out: (1) to test whether several evolutionary units exist within the species; (2) to understand how the species persisted through the Last Glacial Maximum and whether the current range fragmentation originates from distribution shifts after the Last Glacial Maximum or from more ancient events; and (3) to investigate whether current mitochondrial diversity reflects past population history or current habitat fragmentation. Location The Pyrenees in south‐western France and northern Spain. Methods We used variation in the hypervariable left domain of the mitochondrial control region of 146 lizards collected in 15 localities, supplemented by cytochrome b sequences downloaded from GenBank to cover most of the species’ distribution range. Measures of population genetic diversity were contrasted with population isolation inferred from topography. Classical (F‐statistics) and coalescence‐based methods were used to assess the level of gene flow and estimate divergence time between populations. We used coalescence‐based simulations to test the congruence of our genetic data with a scenario of simultaneous divergence of current populations. Results Coalescence‐based analyses suggested that these peripheral populations diverged simultaneously at the end of the last glacial episode when their habitats became isolated on mountain summits. High mitochondrial diversity was found in peripheral, isolated populations, while the populations from the core of the species’ range were genetically impoverished. Where mitochondrial diversity has been retained, populations within the same massif exhibited high levels of genetic differentiation. Main conclusions As suggested for many other mountain species, the Pyrenean rock lizard survived glacial maxima through short‐distance range shifts instead of migration or contraction in distant southern refugia. Most of the main Pyrenean range has apparently been re‐colonized from a single or a few source populations, resulting in a loss of genetic diversity in re‐colonized areas. As a result, current levels of intra‐population mitochondrial diversity are better explained by post‐glacial population history than by current habitat fragmentation. Genetic population differentiation within massifs implies severe reduction in female‐mediated gene flow between patches of habitats.  相似文献   

15.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号