首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central‐marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter‐population genetic differentiation compared to range cores. CMH predictions are based on long‐held “abundant‐centre” assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying “abundant‐centre” assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to “abundant‐centre” assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.  相似文献   

2.
Coppice abandonment had negative consequences for the biodiversity of forest vegetation and several groups of invertebrates. Most coppicing restoration studies have focused only on a single trophic level despite the fact that ecosystems are characterized by interactions between trophic levels represented by various groups of organisms. To address the patterns of functional diversity in the perspective of coppicing restoration, we studied the short-term effects of conservation-motivated tree canopy thinning in an abandoned coppice with standards in Central Europe, a region where such attempts have been rare so far. The functional diversity of vascular plants and spiders, chosen as two model trophic groups within the forest ecosystem, was compared between thinned and control forest patches. To characterize functional patterns, we examined several functional traits. These traits were assigned to two contrasting categories: response traits reflecting a change of environment (for both vascular plants and spiders) and effect traits influencing the ecosystem properties (only for vascular plants). Functional diversity was analysed by CCA using two measures: community-weighted means (CWM) and Rao’s quadratic diversity (RaoQ). CCA models revealed that the canopy thinning had a positive effect on the diversity of the response traits of both trophic groups and negatively influenced the diversity of effect traits. In addition, we found distinct seasonal dynamics in functional diversity of the spider communities, which was probably linked to leaf phenology of deciduous trees. We conclude that canopy thinning affected functional diversity across trophic groups during the initial phase of coppicing restoration. With necessary precautions, careful canopy thinning can be effectively applied in the restoration of functional diversity in abandoned coppices.  相似文献   

3.
Vegetation canopy structure is a fundamental characteristic of terrestrial ecosystems that defines vegetation types and drives ecosystem functioning. We use the multivariate structural trait composition of vegetation canopies to classify ecosystems within a global canopy structure spectrum. Across the temperate forest sub‐set of this spectrum, we assess gradients in canopy structural traits, characterise canopy structural types (CST) and evaluate drivers and functional consequences of canopy structural variation. We derive CSTs from multivariate canopy structure data, illustrating variation along three primary structural axes and resolution into six largely distinct and functionally relevant CSTs. Our results illustrate that within‐ecosystem successional processes and disturbance legacies can produce variation in canopy structure similar to that associated with sub‐continental variation in forest types and eco‐climatic zones. The potential to classify ecosystems into CSTs based on suites of structural traits represents an important advance in understanding and modelling structure–function relationships in vegetated ecosystems.  相似文献   

4.
Analysing how species modify their trait expression along a diversity gradient brings insight about the role that intraspecific variability plays over species interactions, e.g. competition versus complementarity. Here, we evaluated the functional trait space of nine tree species dominant in three types of European forests (a continental‐Mediterranean, a mountainous mixed temperate and a boreal) growing in communities with different species richness in the canopy, including pure stands. We compiled whole‐plant and leaf traits in 1719 individuals, and used them to quantify species trait hypervolumes in communities with different tree species richness. We investigated changes along the species richness gradient to disentangle species responses to the neighbouring environment, in terms of hypervolume size (trait variance), shape (trait relative importance) and centroid translation (shifts of mean trait values) using null models. Our main results showed differences in trait variance and shifts of mean values along the tree diversity gradient, with shorter trees but with larger crowns in mixed stands. We found constrained functional spaces (trait convergence) in pure stands, suggesting an important intraspecific competition, and expanded functional spaces (trait divergence) in two‐species admixtures, suggesting competition release due to interspecific complementarity. Nevertheless, further responses to increasing species richness were different for each forest type, waning species complementarity in sites with limiting conditions for growth. Our results demonstrate that tree species phenotypes respond to the species richness in the canopy in European forests, boosting species complementarity at low level of canopy diversity and with a site‐specific pattern at greater level of species richness. These outcomes evidence the limitation of functional diversity measures based only on traits from pure stands or general trait database values.  相似文献   

5.
The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here, we report on the elevation and soil‐type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four interconnected findings. First, geographic variation at the soil‐Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation‐dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation‐ and soil‐dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate.  相似文献   

6.
Chronic anthropogenic disturbances (CAD) and rainfall are important drivers of plant community assembly, but little is known about the role played by inter‐ and intraspecific trait variation as communities respond to these pervasive forces. Here, we examined the hypothesis that lower precipitation and higher CAD reduce both intra‐ and interspecific trait variation in Caatinga dry forests. We sampled woody plants across 15 plots along precipitation and CAD gradients and measured resource‐use traits. The effects of precipitation and CAD on RaoQ functional diversity were decomposed into species turnover and intraspecific variability. We used “T‐statistics” to assess the trait sorting from the regional pool to local communities (i.e., external filtering), and within‐community forces leading to low trait overlap (i.e., internal filtering) at individual and species levels. Intraspecific variability explained at least one‐third of the total trait variation and 46% of variation in multitrait diversity across communities. Increasing disturbance reduced multitrait diversity, while precipitation affected some particular traits, such as wood density. Overall, precipitation determined species sorting across communities, while disturbance relaxed internal filters, leading to higher trait overlap within communities due to higher intraspecific variability. Our results suggest that the woody Caatinga flora contains a substantial amount of both inter‐ and intraspecific trait variation. This variation is not randomly distributed within and across communities, but varies according to rainfall conditions and disturbance intensity. These findings reinforce the emerging idea that human disturbances can reorganize plant communities at multiple scales and highlight trait variability as a key biological asset for the resilience of dry forests.  相似文献   

7.
1. The species composition of stream fish assemblages changes across the longitudinal fluvial gradient of large river basins. These changes may reflect both zonation in species distributions and environmental filtering of fish traits as stream environments change from the uplands to the lowlands of large catchments. Previous research has shown that taxonomic diversity generally increases in larger, lowland streams, and the River Continuum Concept, the River Habitat Template and other frameworks have provided expectations for what functional groups of fishes should predominate in certain stream types. However, studies addressing the functional trait composition of fish assemblages across large regions are lacking, particularly in tropical river basins. 2. We examined functional trait–environment relationships and functional diversity of stream fish assemblages in the Río Grijalva Basin in southern Mexico. Traits linked to feeding, locomotion and life history strategy were measured in fishes from streams throughout the catchment, from highland headwaters to broad, lowland streams. Relationships between functional traits and environmental variables at local and landscape scales were examined using multivariate ordination, and the convex hull volume of trait space occupied by fish assemblages was calculated as a measure of functional diversity. 3. Although there were a few exceptions, functional diversity of assemblages increased with species richness along the gradient from uplands to lowlands within the Grijalva Basin. Traits related to swimming, habitat preference and food resource use were associated with both local (e.g. substratum type, pool availability) and landscape‐scale (e.g. forest cover) environmental variables. 4. Along with taxonomic structure and diversity, the functional composition of fish assemblages changed across the longitudinal fluvial gradient of the basin. Trait–environment relationships documented in this study partially confirmed theoretical expectations and revealed patterns that may help in developing a better understanding of general functional responses of fish assemblages to environmental change.  相似文献   

8.
1. Patterns of species richness and species assemblage composition of ground‐dwelling arthropods in primary successions along glacier forelands are traditionally described using a taxonomic approach. On the other hand, the functional trait approach could ensure a better characterisation of their colonisation strategies in these types of habitat. 2. The functional trait approach was applied to investigate patterns of functional diversity and life‐history traits of ground beetles and spiders on an alpine debris‐covered glacier and along its forefield in order to describe their colonisation strategies. 3. Ground beetles and spiders were sampled at different successional stages, representing five stages of deglaciation. 4. The results show that the studied glacier hosts ground beetle and spider assemblages that are mainly characterised by the following traits: walking colonisers, ground hunters and small‐sized species. These traits are typical of species living in cold, wet, and gravelly habitats. The diversity of functional traits in spiders increased along the succession, and in both carabids and spiders, life‐history traits follow the ‘addition and persistence model’. Accordingly, there is no turnover but there is an addition of new traits and a variation in their proportion within each species assemblage along the succession. The distribution of ground beetles and spiders along the glacier foreland and on the glacier seems to be driven by dispersal ability and foraging strategy. 5. The proposed functional approach improves knowledge of the adaptive strategies of ground‐dwelling arthropods colonising glacier surfaces and recently deglaciated terrains, which represent landforms quickly changing due to global warming.  相似文献   

9.
10.
Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre‐emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait‐based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.  相似文献   

11.
Ecological restoration is essential in rehabilitating degraded areas and safeguarding biodiversity, ecosystem services and human welfare. Using functional traits to plan restoration strategies has been suggested as they are the main ecological attributes that underlie ecosystem processes and services. However, few studies have translated ecological theory into actual restoration practices that can be easily used by different stakeholders. In this article, we applied a multiple‐trait approach to select plant species for the restoration of degraded lands inside the Brazilian Amazon Forests. We selected 10 traits encompassing ease of management, geographical distribution and interactions with animals and other ecosystem services and scored these traits using 118 native species. Then, we ranked all species according to the total number of traits that they exhibited to obtain a list of 53 highly ranked species. In addition, we employed non‐metric multidimensional scaling (NMDS) to assess the variation in these traits across the entire group of species. Based on the results, we selected a subset of species that maximizes functional diversity (high variability). We performed a sparse linear discriminant analysis (SLDA) to highlight a minimum set of traits to effectively discriminate botanical families. The final list of species and their traits highlight the importance of preserving not only the historical reference of a focused ecosystem but also its functional diversity to restore the interaction with local fauna, enrich the food chain and guarantee ecosystem services for local communities.  相似文献   

12.
Aim In recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local‐scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local‐scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional‐scale assemblages across continents. The present work aims to address this prediction. Location North and South America. Methods We combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1° and 5° map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. Results The results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusion The results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional‐scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.  相似文献   

13.
Sources of variation among the chemical and spectral properties of tropical forest canopies are poorly understood, yet chemical traits reveal potential ecosystem and phylogenetic controls, and spectral linkages to chemical traits are needed for remote sensing of functional and biological diversity. We analyzed 21 leaf traits in 395 fully sunlit canopies, representing 232 species and multiple growth forms, in a lowland mixed dipterocarp forest of Sarawak, Malaysia. Leaf traits related to light capture and growth (for example, photosynthetic pigments, nutrients) were up to 55% lower, and defense traits (for example, phenols, lignin) were 15–40% higher, in the dominant family Dipterocarpaceae and in its genus Shorea, as compared to all other canopy species. The chemical variation within Dipterocarpaceae and Shorea was equivalent to that of all other canopy species combined, highlighting the role that a single phylogenetic branch can play in creating canopy chemical diversity. Seventeen of 21 traits had more than 50% of their variation explained by taxonomic grouping, and at least 16 traits show a connection to remotely sensed spectroscopic signatures (RMSE < 15%). It is through these chemical-to-spectral linkages that studies of functional and biological diversity interactions become possible at larger spatial scales, thereby improving our understanding of the role of species in tropical forest ecosystem dynamics.  相似文献   

14.
Phytochemical traits are a key component of plant defense theory. Chemical ecology has been biased towards studying effects of individual metabolites even though effective plant defenses are comprised of diverse mixtures of metabolites. We tested the phytochemical landscape hypothesis, positing that trophic interactions are contingent upon their spatial location across a phytochemically diverse landscape. Specifically, intraspecific phytochemical changes associated with vertical strata in forests were hypothesised to affect herbivore communities of the neotropical shrub Piper kelleyi Tepe (Piperaceae). Using a field experiment, we found that phytochemical diversity increased with canopy height, and higher levels of phytochemical diversity located near the canopy were characterised by tradeoffs between photoactive and non‐photoactive biosynthetic pathways. For understory plants closer to the ground, phytochemical diversity increased as direct light transmittance decreased, and these plants were characterised by up to 37% reductions in herbivory. Our results suggest that intraspecific phytochemical diversity structures herbivore communities across the landscape, affecting total herbivory.  相似文献   

15.
Understanding the various processes contributing to community assembly is among the central aims of ecology. As a means of exploring this topic we quantified the relative influences of habitat filtering and competition in establishing patterns of community functional trait diversity across a landscape of lakes. Habitat filtering has been invoked in shaping community structure when co‐occurring taxa are more similar in their traits than expected by chance (under‐dispersion), and competition has been inferred as a structuring agent when co‐occurring taxa are less similar (over‐dispersion). We tested these hypotheses in crustacean zooplankton communities using a functional trait‐based approach based on five traits defining zooplankton feeding and habitat preferences across 51 lakes spanning several large limnological gradients. In general, zooplankton communities were functionally less diverse than random assemblages created from the same regional species pool. Furthermore, functional diversity was strongly correlated with variables related to lake productivity, suggesting that access to resources was the chief habitat filtering process constraining zooplankton functional diversity. This pattern was driven by the predominantly herbivorous cladocerans as opposed to the more commonly omnivorous, and sometimes carnivorous, copepods.  相似文献   

16.
The use of functional traits to describe community structure is a promising approach to reveal generalities across organisms and ecosystems. Plant ecologists have demonstrated the importance of traits in explaining community structure, competitive interactions as well as ecosystem functioning. The application of trait‐based methods to more complex communities such as food webs is however more challenging owing to the diversity of animal characteristics and of interactions. The objective of this study was to determine how functional structure is related to food web structure. We consider that food web structure is the result of 1) the match between consumer and resource traits, which determine the occurence of a trophic interaction between them, and 2) the distribution of functional traits in the community. We implemented a statistical approach to assess whether or not 35 466 pairwise interactions between soil organisms are constrained by trait‐matching and then used a Procrustes analysis to investigate correlations between functional indices and network properties across 48 sites. We found that the occurrence of trophic interactions is well predicted by matching the traits of the resource with those of the consumer. Taxonomy and body mass of both species were the most important traits for the determination of an interaction. As a consequence, functional evenness and the variance of certain traits in the community were correlated to trophic complementarity between species, while trait identity, more than diversity, was related to network topology. The analysis was however limited by trait data availability, and a coarse resolution of certain taxonomic groups in our dataset. These limitations explain the importance of taxonomy, as well as the complexity of the statistical model needed. Our results outline the important implications of trait composition on ecological networks, opening promising avenues of research into the relationship between functional diversity and ecosystem functioning in multi‐trophic systems.  相似文献   

17.
Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.  相似文献   

18.
海南尖峰岭热带山地雨林林冠层树种功能多样性特征   总被引:4,自引:0,他引:4  
以海南尖峰岭热带山地雨林3块1 hm2样地为研究对象,利用11个林冠功能性状结合样地地形及林冠乔木树种样地清查数据,分别基于单维性状和多维性状比较物种多度加权对群落功能离散度指数——平均成对距离(MPD)和平均最近类群距离(MNTD)的影响;同时分析林冠层功能丰富度(FRic)与物种丰富度之间的关系,最后利用零模型探讨不同生境类型下标准化效应MPD和MNTD(经过物种多度加权且剔除群落物种丰富度差异影响)的变化,进而评价林冠层群落水平功能多样性格局及其对局域生境异质性的响应.结果表明: 功能性状维度和物种多度对MPD的影响强烈,不同维度功能性状多度加权前后MPD相关性较弱(R=0.359~0.628);但对MNTD的影响相对较弱,不同维度功能性状多度加权前后MNTD相关性较强(R=0.746~0.820);未经物种多度加权的MPD和MNTD均普遍高估了林冠层的功能离散度.林冠层功能丰富度与物种丰富度基本呈指数相关关系(F=128.20;R2=0.632;AIC=97.72;P<0.001),且功能丰富度很有可能存在一定的物种丰富度阈值.基于不同维度功能性状的林冠层功能多样性格局及其生境响应存在一定的差异性.在生物竞争激烈的低沟生境中,林冠层功能多样性倾向于比预期零模型随机产生的功能多样性高,林冠树种功能性状表现出离散分布;而在其他生境类型中,林冠层功能多样性倾向于接近或低于随机产生的功能多样性,林冠树种功能性状随机或聚集分布.  相似文献   

19.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

20.
Plant functional traits are increasingly used in restoration ecology because they have the potential to guide restoration practices at a broad scale. This article presents a trait‐based multi‐criteria framework to evaluate and predict the performance of 17 plant seedlings to improve ecological restoration of marly eroded areas in the French Southern Alps. The suitability of these species to limit soil erosion was assessed by studying both their response to erosive forces and their effect on erosion dynamics. We assumed that species efficiency could be explained and predicted from plant traits and we looked for trait‐performance relationships. Our results showed that root slenderness ratio, the percentage of fine roots and root system topology, were the three root morphology traits best describing anchorage strength. Root system characterized by a long and thin tap root and many fine lateral ramifications would be the best to resist concentrated runoff. Species response to burial mainly depended on growth form and morphological flexibility. The abilities of species in reinforcing the soil and reducing erosion rates were negatively correlated to root diameter and positively to the percentage of fine roots. Moreover, root system density and root tensile strength also influenced root reinforcement. Finally, the ability to trap sediment was positively correlated to leaf area and canopy density. Species were then scored and classified in four clusters according to their global performance. This method allows identifying species that possess both response and effect traits related to the goal of preventing erosion during ecological restoration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号