共查询到20条相似文献,搜索用时 22 毫秒
1.
Effects of livestock grazing on rangeland biodiversity: A meta‐analysis of grouse populations 下载免费PDF全文
Seth J. Dettenmaier Terry A. Messmer Torre J. Hovick David K. Dahlgren 《Ecology and evolution》2017,7(19):7620-7627
Livestock grazing affects over 60% of the world's agricultural lands and can influence rangeland ecosystem services and the quantity and quality of wildlife habitat, resulting in changes in biodiversity. Concomitantly, livestock grazing has the potential to be detrimental to some wildlife species while benefiting other rangeland organisms. Many imperiled grouse species require rangeland landscapes that exhibit diverse vegetation structure and composition to complete their life cycle. However, because of declining populations and reduced distributions, grouse are increasingly becoming a worldwide conservation concern. Grouse, as a suite of upland gamebirds, are often considered an umbrella species for other wildlife and thus used as indicators of rangeland health. With a projected increase in demand for livestock products, better information will be required to mitigate the anthropogenic effects of livestock grazing on rangeland biodiversity. To address this need, we completed a data‐driven and systematic review of the peer‐reviewed literature to determine the current knowledge of the effects of livestock grazing on grouse populations (i.e., chick production and population indices) worldwide. Our meta‐analysis revealed an overall negative effect of livestock grazing on grouse populations. Perhaps more importantly, we identified an information void regarding the effects of livestock grazing on the majority of grouse species. Additionally, the reported indirect effects of livestock grazing on grouse species were inconclusive and more reflective of differences in the experimental design of the available studies. Future studies designed to evaluate the direct and indirect effects of livestock grazing on wildlife should document (i) livestock type, (ii) timing and frequency of grazing, (iii) duration, and (iv) stocking rate. Much of this information was lacking in the available published studies we reviewed, but is essential when making comparisons between different livestock grazing management practices and their potential impacts on rangeland biodiversity. 相似文献
2.
HSS revisited: multi‐channel processes mediate trophic control across a productivity gradient 下载免费PDF全文
Classical food web theory holds that energy channels are regulated by top‐down control with increasing productivity, arising from within‐channel processes. However, these hypotheses do not consider the existence of parallel energy channels linked by shared resource pools and which can fuel generalist predators, imposing trophic control arising from multi‐channel processes. Using 23 large marine food webs, we show that food web responses to increasing productivity are consistent with the apparent trophic cascade hypothesis (ATCH) – with rising productivity predators derive an increasing fraction of their diet from increasingly productive bottom‐up controlled detritus channels, thereby subsidising predator biomass, and in turn strengthening top‐down control in parallel grazing channels. These results testify to a fundamental role of detritus channels specifically and multi‐channel processes in general in mediating food web response to productivity and demonstrate that the ATCH provides an alternative explanation for classical predictions of top‐down control. 相似文献
3.
4.
Despite increasing frequency of invasions by alien plant species with widespread ecological and economic consequences, it remains unclear how belowground compartments of ecosystems are impacted. In order to synthetize current knowledge and provide future directions for research we performed a meta‐analysis assessing the impact of invasive alien plant species on soil fauna abundance. Compared to previous synthesis on this topic, we included together in our model the trophic group of each soil faunal taxa (from herbivores to predators) and habitat structure, namely open and closed habitats (i.e. grass and shrub dominated areas versus forested areas). In doing so, we highlighted that both moderators strongly interact to determine the response of soil fauna to the presence of invasive alien plants. Soil fauna abundance increase in the presence of invasive species only in closed habitats (+18.2%). This pattern of habitat‐dependent response (positive effect in closed habitats) was only found for primary consumers (i.e. herbivores +29.1% and detritivores +66.7%) within both detritus‐based and live root‐based trophic pathways. Abundances of predators and microbivores did not respond to the presence of IAS irrespective of habitat structure. For several groups, the habitat structure (open or closed) significantly drove their responses to the presence of invasive alien species. In addition, we carefully considered potential sources of bias (e.g. geographic, taxonomic and functional) within the collected data in an attempt to highlight gaps in available knowledge on the subject. Our findings support the conclusions of previous studies on the subject by demonstrating 1) that soil fauna abundance is impacted by biological invasions, 2) that initial habitat structure has a strong influence on the outcome and 3) that responses within the soil fauna differ between trophic levels with a stronger response of primary consumers. 相似文献
5.
G. Leroy 《Animal genetics》2014,45(5):618-628
Inbreeding, by virtue of its consequence on traits of interest, is a topic of major interest for geneticists and animal breeders. Based on meta‐analysis conducted on 57 studies and seven livestock species considering a wide variety of selected traits, it was estimated that inbreeding depression corresponds to on average a decrease of 0.137 percent of the mean of a trait per 1 percent of inbreeding. The decrease was larger for production traits (reduction of 0.351%) than for other trait categories. For populations raised as purebreds, inbreeding depression may impact the economic income of breeders. There is a need for studies assessing the existence of an inbreeding purge phenomenon as well as the impact of inbreeding on adaptation capacities of livestock species. Promises brought by the development of dense genotyping as well as functional genomics will increase the capacities to improve our understanding and management of the phenomenon. 相似文献
6.
7.
Aaron M. Davis Peter J. Unmack Bradley J. Pusey Richard G. Pearson David L. Morgan 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):623-634
Using the Australian marine‐freshwater terapontid fishes as a model system, we examined the role of dietary phenotypic optima in an adaptive macro‐evolutionary landscape. Comparative modelling relying on both a priori and data‐driven identification of selective regimes suggested multi‐peak models as best describing much of the dietary phenotypic landscape of terapontids. Both approaches identified common phenotypic optima for different lineages of marine and freshwater herbivores, and minimal differentiation between carnivores and omnivores, irrespective of their phylogenetic relationships, as the model best describing morphological evolution. Significant correlations also existed between these phenotypic axes and proportions of non‐animal dietary items in species’ diets. While simulation results provided evidence for a multi‐peak adaptive landscape in the evolution of trophic morphology in terapontids, they could not rule out chance convergence in these adaptive peaks. However, they do provide scope for identifying areas for more detailed, functionally specific study of phenotypic convergence in herbivorous terapontid trophic habits. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 623–634. 相似文献
8.
Livestock impact is one of the main causes of habitat loss globally. However, the effects of livestock on flora and fauna diversity have been contradictory, observing cases with positive, neutral, and negative effects. We performed a meta-analysis of the scientific information published in the last 15 years, using Google Scholar and WoS for the search. The inclusion criteria were if the studies presented a) changes in abundance, richness, biomass, plant cover, and consumers; b) included replicas; c) the size of the sample; d) study on domestic cattle, and e) reported the mean and standard deviation of effects of each treatment. We found 2450 scientific publications of which we selected 67 publications that reported the effects a) of grazing on the richness, abundance, cover, and biomass of plants (producers), and b) on richness and abundance of primary and secondary consumers, comparing grazed and non-grazed (or weakly grazed) environments. Grazing did not significantly affect the abundance of the plants or animals studied, regardless of whether they were primary or secondary consumers. The magnitude and direction of the observed effects on plants and consumers could be influenced by livestock type, the natural environments evaluated (forests, grasslands, or scrublands), the spatial and temporal scales involved, and the plant species origin (i.e., native versus non-native). The significant effect of livestock on plants and consumers, also can be differentiated in the characteristics of the species (e.g., life-history traits, etc.) that go beyond their position in the food chains. Evaluating the livestock grazing effect in more than one trophic level helps understand how grazing affects the species according to their way of life, in contrast to evaluations of a single trophic level. 相似文献
9.
Understanding how biodiversity affects functioning of ecosystems requires integrating diversity within trophic levels (horizontal diversity) and across trophic levels (vertical diversity, including food chain length and omnivory). We review theoretical and experimental progress toward this goal. Generally, experiments show that biomass and resource use increase similarly with horizontal diversity of either producers or consumers. Among prey, higher diversity often increases resistance to predation, due to increased probability of including inedible species and reduced efficiency of specialist predators confronted with diverse prey. Among predators, changing diversity can cascade to affect plant biomass, but the strength and sign of this effect depend on the degree of omnivory and prey behaviour. Horizontal and vertical diversity also interact: adding a trophic level can qualitatively change diversity effects at adjacent levels. Multitrophic interactions produce a richer variety of diversity-functioning relationships than the monotonic changes predicted for single trophic levels. This complexity depends on the degree of consumer dietary generalism, trade-offs between competitive ability and resistance to predation, intraguild predation and openness to migration. Although complementarity and selection effects occur in both animals and plants, few studies have conclusively documented the mechanisms mediating diversity effects. Understanding how biodiversity affects functioning of complex ecosystems will benefit from integrating theory and experiments with simulations and network-based approaches. 相似文献
10.
Laura Melissa Guzman Rachel M. Germain Coreen Forbes Samantha Straus Mary I. O'Connor Dominique Gravel Diane S. Srivastava Patrick L. Thompson 《Ecology letters》2019,22(1):19-33
Metacommunity theory provides an understanding of how spatial processes determine the structure and function of communities at local and regional scales. Although metacommunity theory has considered trophic dynamics in the past, it has been performed idiosyncratically with a wide selection of possible dynamics. Trophic metacommunity theory needs a synthesis of a few influential axis to simplify future predictions and tests. We propose an extension of metacommunity ecology that addresses these shortcomings by incorporating variability among trophic levels in ‘spatial use properties’. We define ‘spatial use properties’ as a set of traits (dispersal, migration, foraging and spatial information processing) that set the spatial and temporal scales of organismal movement, and thus scales of interspecific interactions. Progress towards a synthetic predictive framework can be made by (1) documenting patterns of spatial use properties in natural food webs and (2) using theory and experiments to test how trophic structure in spatial use properties affects metacommunity dynamics. 相似文献
11.
Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta‐analysis 下载免费PDF全文
Although invasive plants are a major source of terrestrial ecosystem degradation worldwide, it remains unclear which trophic levels above the base of the food web are most vulnerable to plant invasions. We performed a meta‐analysis of 38 independent studies from 32 papers to examine how invasive plants alter major groupings of primary and secondary consumers in three globally distributed ecosystems: wetlands, woodlands and grasslands. Within each ecosystem we examined if green (grazing) food webs are more sensitive to plant invasions compared to brown (detrital) food webs. Invasive plants have strong negative effects on primary consumers (detritivores, bacterivores, fungivores, and/or herbivores) in woodlands and wetlands, which become less abundant in both green and brown food webs in woodlands and green webs in wetlands. Plant invasions increased abundances of secondary consumers (predators and/or parasitoids) only in woodland brown food webs and green webs in wetlands. Effects of invasive plants on grazing and detrital food webs clearly differed between ecosystems. Overall, invasive plants had the most pronounced effects on the trophic structure of wetlands and woodlands, but caused no detectable changes to grassland trophic structure. 相似文献
12.
13.
14.
Chrystal S. Mantyka‐pringle Tara G. Martin Jonathan R. Rhodes 《Global Change Biology》2012,18(4):1239-1252
Climate change and habitat loss are both key threatening processes driving the global loss in biodiversity. Yet little is known about their synergistic effects on biological populations due to the complexity underlying both processes. If the combined effects of habitat loss and climate change are greater than the effects of each threat individually, current conservation management strategies may be inefficient and at worst ineffective. Therefore, there is a pressing need to identify whether interacting effects between climate change and habitat loss exist and, if so, quantify the magnitude of their impact. In this article, we present a meta‐analysis of studies that quantify the effect of habitat loss on biological populations and examine whether the magnitude of these effects depends on current climatic conditions and historical rates of climate change. We examined 1319 papers on habitat loss and fragmentation, identified from the past 20 years, representing a range of taxa, landscapes, land‐uses, geographic locations and climatic conditions. We find that current climate and climate change are important factors determining the negative effects of habitat loss on species density and/or diversity. The most important determinant of habitat loss and fragmentation effects, averaged across species and geographic regions, was current maximum temperature, with mean precipitation change over the last 100 years of secondary importance. Habitat loss and fragmentation effects were greatest in areas with high maximum temperatures. Conversely, they were lowest in areas where average rainfall has increased over time. To our knowledge, this is the first study to conduct a global terrestrial analysis of existing data to quantify and test for interacting effects between current climate, climatic change and habitat loss on biological populations. Understanding the synergistic effects between climate change and other threatening processes has critical implications for our ability to support and incorporate climate change adaptation measures into policy development and management response. 相似文献
15.
16.
Madhav Prakash Thakur Martina Herrmann Katja Steinauer Saskia Rennoch Simone Cesarz Nico Eisenhauer 《Ecology and evolution》2015,5(19):4300-4314
Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density‐mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density‐dependent population change in predators, that is, an increase in low‐density treatments, but a decrease in high‐density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in interspecific plant competition. These results highlight that belowground predators can relax interspecific plant competition by increasing nutrient mineralization through their density‐dependent cascading effects on detritivore and soil microbial communities. 相似文献
17.
Aim Stratospheric ozone depletion and simultaneous increases in UVB radiation due to human activities have the potential to affect freshwater biota. The goal of our study is to summarize the impacts of UVB on freshwater biota by comparing the differences in the general patterns, including the directions and the magnitudes of the impacts of UVB on four major freshwater taxa (phytoplankton, zooplankton, fish and amphibians). The potential driving forces for these differences are also explored. Location Global. Methods We performed a meta‐analysis on a database consisting of 146 studies including 127 species from four taxonomic groups. We tested for the effects of taxonomic group, experimental venue, developmental stage, UVB dosage and the latitude of organism provenance. Results UVB had significant negative effects on freshwater biota from the molecular–cellular to individual–population levels. However, these effects were highly variable among the taxonomic groups. In general, zooplankton was the most negatively affected group, whereas fish and amphibians were less affected. As direct fitness components, survival and reproduction were the two responses most affected by UVB. The sensitivities of individuals to UVB at different developmental stages were different for the same taxon, while the stage‐dependent sensitivity patterns also differed among different taxa. Additionally, effects of different experimental venues, UVB dosages and latitudes of organism provenance on the effects of UVB were detected. Main conclusions Our results suggest that UVB has significant negative effects on freshwater biota. We found that the effects of UVB varied among taxonomic groups, developmental stages, experimental venues, UVB dosages and latitudes of organism provenance. The variation in sensitivity among the different taxa has important implications for ecosystem responses. Given that stratospheric ozone is unlikely to recover to the levels of the 1980s in the upcoming decades, more conservation efforts should be taken to protect freshwater habitats from further damage by UVB. 相似文献
18.
Most of our knowledge of the effect of grazing on grassland structure is based on grazed–ungrazed contrasts. The effects of grazing in the most common scenario, where grazing intensity varies from low to high grazing intensity, are less known. The objectives of this paper were to 1) quantify the effect of stocking rates on species richness and diversity of grasslands world‐wide, and 2) evaluate the response under different environmental and experimental conditions. We conducted a meta‐analysis of experiments with at least two levels of controlled stocking rates and evaluated their effect on species richness and diversity. The results showed that the response of richness and diversity to either reducing or increasing stocking rate from a moderate level mostly fell within the range 25% or 5 species. Mean response of species richness and diversity to increasing stocking rate from moderate to high levels was negative. Mean response to lowering stocking rate from moderate levels was not different from zero. However, overall, species richness significantly decreased as stocking rate increased. The response of richness and diversity to stocking rate was not related to mean precipitation, productivity or aridity. However, the most negative responses of richness to stocking rate were larger in arid, low productivity systems than in subhumid and humid systems. The effects of grazing on richness and diversity found in this review were smaller than the effects on species composition shown by the literature. Thus, grazing drastically changes species composition, but the net change of species and diversity is much smaller. 相似文献
19.
Dana M. Bergstrom Arko Lucieer Kate Kiefer Jane Wasley Lee Belbin Tore K. Pedersen Steven L. Chown 《Journal of Applied Ecology》2009,46(5):1133-1136
1. The management of non-indigenous species is not without its complications. In Bergstrom et al. 's (2009) study, we demonstrated that feral cats Felis catus on sub-Antarctic Macquarie Island were exerting top-down control on the feral rabbit Oryctolagus cuniculus population, and that the eradication of the cats led to a substantial increase in rabbit numbers and an associated trophic cascade.
2. Dowding et al. (2009) claim our modelling was flawed for various reasons, but primarily that a reduction in the application of the rabbit control agent, Myxoma virus, coinciding with cat removal, was a major driver of rabbit population release.
3. We explore this proposition (as well as others) by examining rates of Myxoma viral release between 1991 and 2006 (with an attenuation factor for the years, 2003–2006) in association with presence/absence of cats against two estimates of rabbit population size. Myxoma viral release was a significant factor in the lower estimates of rabbit population, but the effect was small, and was not significant for higher rabbit population estimates. By contrast, the presence or absence of cats remained highly significant for both estimates.
4. Synthesis and applications. We re-affirm our position that top-down control of rabbit numbers by cats, prior to their eradication, was occurring on Macquarie Island. Nonetheless, we agree with Dowding et al. (2009) that systems with multiple invasive species represent complex situations that require careful scrutiny. Such scrutiny should occur in advance of, during, and following management interventions. 相似文献
2. Dowding et al. (2009) claim our modelling was flawed for various reasons, but primarily that a reduction in the application of the rabbit control agent, Myxoma virus, coinciding with cat removal, was a major driver of rabbit population release.
3. We explore this proposition (as well as others) by examining rates of Myxoma viral release between 1991 and 2006 (with an attenuation factor for the years, 2003–2006) in association with presence/absence of cats against two estimates of rabbit population size. Myxoma viral release was a significant factor in the lower estimates of rabbit population, but the effect was small, and was not significant for higher rabbit population estimates. By contrast, the presence or absence of cats remained highly significant for both estimates.
4. Synthesis and applications. We re-affirm our position that top-down control of rabbit numbers by cats, prior to their eradication, was occurring on Macquarie Island. Nonetheless, we agree with Dowding et al. (2009) that systems with multiple invasive species represent complex situations that require careful scrutiny. Such scrutiny should occur in advance of, during, and following management interventions. 相似文献
20.
Intra‐guild predation (IGP) – where a top predator (IGPred) consumes both a basal resource and a competitor for that resource (IGPrey) – has become a fundamental part of understanding species interactions and community dynamics. IGP communities composed of intraguild predators and prey have been well studied; however, we know less about IGP communities composed of predators, pathogens, and resources. Resource quality plays an important role in community dynamics and may influence IGP dynamics as well. We conducted a meta‐analysis on predator–pathogen–resource communities to determine whether resource quality mediated by the pathogen affected predator life‐history traits and if these effects met the theoretical constraints of IGP communities. To do this, we summarized results from studies that investigated the use of predators and pathogens to control insect pests. In these systems, the predators are the IGPred and pathogens are the IGPrey. We found that consumer longevity, fecundity, and survival decreased by 26%, 31% and 13% respectively, when predators consumed pathogen‐infected prey, making the infected prey a low quality resource. Predators also significantly preferred healthy prey over infected prey. When we divided consumers by enemy type, strict predators (e.g. wolf spiders) had no preference while parasitoids preferred healthy prey. Our results suggest that communities containing parasitoids and pathogens may rarely exhibit intraguild predation; whereas, communities composed of strict predators and pathogens are more likely dominated by IGP dynamics. In these latter communities, the consumption of low and high quality resources suggests that IGP communities composed of strict predators, pathogens and prey should naturally persist, supporting IGP theory. Synthesis We investigated how consuming pathogen‐infected prey influence important life‐history parameters of insect predators. Pathogens are used in a variety of biocontrol programs, especially to control crop pests. We found that true predators (i.e. wolf spiders) have no preference for healthy or infected prey and have reduced fecundity, survival and longevity consuming infected prey. However, parasitoids avoided infected prey when possible. In biocontrol programs with multiple control agents, parasitoids and pathogens would do a better job controlling pests as predators would reduce the amount of pathogen available and have reduced fitness from consuming infected prey. However, theory suggests that true predators, prey and pathogens may coexist long term. 相似文献