首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work has shown that stomatal conductance (gs) and assimilation (A) are responsive to changes in the hydraulic conductance of the soil to leaf pathway (KL), but no study has quantitatively described this relationship under controlled conditions where steady‐state flow is promoted. Under steady‐state conditions, the relationship between gs, water potential (Ψ) and KL can be assumed to follow the Ohm's law analogy for fluid flow. When boundary layer conductance is large relative to gs, the Ohm's law analogy leads to gs = KLsoilleaf)/D, where D is the vapour pressure deficit. Consequently, if stomata regulate Ψleaf and limit A, a reduction in KL will cause gs and A to decline. We evaluated the regulation of Ψleaf and A in response to changes in KL in well‐watered ponderosa pine seedlings (Pinus ponderosa). To vary KL, we systematically reduced stem hydraulic conductivity (k) using an air injection technique to induce cavitation while simultaneously measuring Ψleaf and canopy gas exchange in the laboratory under constant light and D. Short‐statured seedlings (< 1 m tall) and hour‐long equilibration times promoted steady‐state flow conditions. We found that Ψleaf remained constant near ? 1·5 MPa except at the extreme 99% reduction of k when Ψleaf fell to ? 2·1 MPa. Transpiration, gs, A and KL all declined with decreasing k (P < 0·001). As a result of the near homeostasis in bulk Ψleaf, gs and A were directly proportional to KL (R2 > 0·90), indicating that changes in KL may affect plant carbon gain.  相似文献   

2.
Diurnal depression of leaf hydraulic conductance in a tropical tree species   总被引:10,自引:2,他引:8  
Diurnal patterns of hydraulic conductance of the leaf lamina (Kleaf) were monitored in a field‐grown tropical tree species in an attempt to ascertain whether the dynamics of stomatal conductance (gs) and CO2 uptake (Aleaf) were associated with short‐term changes in Kleaf. On days of high evaporative demand mid‐day depression of Kleaf to between 40 and 50% of pre‐dawn values was followed by a rapid recovery after 1500 h. Leaf water potential during the recovery stage was less than ?1 MPa implying a refilling mechanism, or that loss of Kleaf was not linked to cavitation. Laboratory measurement of the response of Kleaf to Ψleaf confirmed that leaves in the field were operating at water potentials within the depressed region of the leaf ‘vulnerability curve’. Diurnal courses of Kleaf and Ψleaf predicted from measured transpiration, xylem water potential and the Kleaf vulnerability function, yielded good agreement with observed trends in both leaf parameters. Close correlation between depression of Kleaf, gs and Aleaf suggests that xylem dysfunction in the leaf may lead to mid‐day depression of gas exchange in this species.  相似文献   

3.
Over the past decade, the concept of isohydry or anisohydry, which describes the link between soil water potential (ΨS), leaf water potential (ΨL), and stomatal conductance (gs), has soared in popularity. However, its utility has recently been questioned, and a surprising lack of coordination between the dynamics of ΨL and gs across biomes has been reported. Here, we offer a more expanded view of the isohydricity concept that considers effects of vapour pressure deficit (VPD) and leaf area index (AL) on the apparent sensitivities of ΨL and gs to drought. After validating the model with tree‐ and ecosystem‐scale data, we find that within a site, isohydricity is a strong predictor of limitations to stomatal function, though variation in VPD and leaf area, among other factors, can challenge its diagnosis. Across sites, the theory predicts that the degree of isohydricity is a good predictor of the sensitivity of gs to declining soil water in the absence of confounding effects from other drivers. However, if VPD effects are significant, they alone are sufficient to decouple the dynamics of ΨL and gs entirely. We conclude with a set of practical recommendations for future applications of the isohydricity framework within and across sites.  相似文献   

4.
Two experiments examined simultaneous changes in leaf area (AL), root length (Lr), stomatal conductance (gs), leaf water potential (ΨL), transpiration and hydraulic plant conductance per unit leaf area (G) during the first three shoot cycles of northern red oak (Quercus rubra L.) grown under favourable and controlled conditions. Each shoot cycle consisted of bud swell, stem elongation, leaf expansion and rest; roots grew almost continuously. The gs of all leaves decreased substantially while leaves of the newest flush were expanding and increased modestly when seedling leaf area remained constant. Overall, gs decreased. The ΨL of mature leaves decreased during leaf expansion and increased by an equivalent amount during intervening periods. Possible explanations for the paired changes in gs and ΨL are considered. Changes in G closely paralleled those of canopy gs. These parallel changes during polycyclic seedling growth should act to keep seedling ΨL relatively constant as plant size increases and thereby help prevent ΨL from dropping to levels that would cause runaway embolism.  相似文献   

5.
Studies on the temperature (T) responses of photosynthesis and leaf hydraulic conductance (Kleaf) are important to plant gas exchange. In this study, the temperature responses of photosynthesis and Kleaf were studied in Shanyou 63 (Oryza sativa) and Yannong 19 (Triticum aestivum). Leaf water potential (Ψleaf) was insensitive to T in Shanyou 63, while it significantly decreased with T in Yannong 19. The differential ΨleafT relationship partially accounted for the differing gmT relationships, where gm was less sensitive to T in Yannong 19 than in Shanyou 63. With different gmT and ΨleafT relationships, the temperature responses of photosynthetic limitations were surprisingly similar between the two lines, and the photosynthetic rate was highly correlated with gm. With the increasing T, Kleaf increased in Shanyou 63 while it decreased in Yannong 19. The different KleafT relationships were related to different ΨleafT relationships. When excluding the effects of water viscosity and Ψleaf, Kleaf was insensitive to T in both lines. gm and Kleaf were generally not coordinated across different temperatures. This study highlights the importance of Ψleaf on leaf carbon and water exchanges, and the mechanisms for the gmT and KleafT relationships were discussed.  相似文献   

6.
Stomatal conductance (gs) and mesophyll conductance (gm) represent major constraints to photosynthetic rate (A), and these traits are expected to coordinate with leaf hydraulic conductance (Kleaf) across species, under both steady‐state and dynamic conditions. However, empirical information about their coordination is scarce. In this study, Kleaf, gas exchange, stomatal kinetics, and leaf anatomy in 10 species including ferns, gymnosperms, and angiosperms were investigated to elucidate the correlation of H2O and CO2 diffusion inside leaves under varying light conditions. Gas exchange, Kleaf, and anatomical traits varied widely across species. Under light‐saturated conditions, the A, gs, gm, and Kleaf were strongly correlated across species. However, the response patterns of A, gs, gm, and Kleaf to varying light intensities were highly species dependent. Moreover, stomatal opening upon light exposure of dark‐adapted leaves in the studied ferns and gymnosperms was generally faster than in the angiosperms; however, stomatal closing in light‐adapted leaves after darkening was faster in angiosperms. The present results show that there is a large variability in the coordination of leaf hydraulic and gas exchange parameters across terrestrial plant species, as well as in their responses to changing light.  相似文献   

7.
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs) and leaf water potential (Ψleaf). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16–19 for the respective treatments. Xylem sap pH and NO3? and Ca2+ concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs, but did not change Ψleaf. Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re‐watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA‐induced response, independent of changes in Ψleaf.  相似文献   

8.
Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in three Pinus radiata clones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction in Kroot‐r caused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease in Kplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery of Kroot‐r and gs. Our results demonstrated that the reduction in Kplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleaf as water stress started. We concluded that higher Kplant‐l is associated with water stress resistance by sustaining a less negative Ψleaf and delaying stomatal closure.  相似文献   

9.
Reduced stomatal conductance (gs) during soil drought in angiosperms may result from effects of leaf turgor on stomata and/or factors that do not directly depend on leaf turgor, including root‐derived abscisic acid (ABA) signals. To quantify the roles of leaf turgor‐mediated and leaf turgor‐independent mechanisms in gs decline during drought, we measured drought responses of gs and water relations in three woody species (almond, grapevine and olive) under a range of conditions designed to generate independent variation in leaf and root turgor, including diurnal variation in evaporative demand and changes in plant hydraulic conductance and leaf osmotic pressure. We then applied these data to a process‐based gs model and used a novel method to partition observed declines in gs during drought into contributions from each parameter in the model. Soil drought reduced gs by 63–84% across species, and the model reproduced these changes well (r2 = 0.91, P < 0.0001, n = 44) despite having only a single fitted parameter. Our analysis concluded that responses mediated by leaf turgor could explain over 87% of the observed decline in gs across species, adding to a growing body of evidence that challenges the root ABA‐centric model of stomatal responses to drought.  相似文献   

10.
Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas‐exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady‐state stomatal conductance (gs) to changes in VPD but the gs dynamics between steady‐states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms.  相似文献   

11.
The temperature dependence of mesophyll conductance (gm) was measured in well‐watered red raspberry (Rubus idaeus L.) plants acclimated to leaf‐to‐air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (Tleaf) rise from 20 to 35 °C. Contrary to the great majority of gm temperature responses published to date, we found a pronounced reduction of gm with increasing Tleaf irrespective of leaf chamber O2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (gs), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of gm. However, the concerted diurnal reductions of gm and gs were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of gm under favourable leaf water status. Our results challenge the view that the temperature dependence of gm can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.?  相似文献   

12.
A comparative study on stomatal control under water deficit was conducted on grapevines of the cultivars Grenache, of Mediterranean origin, and Syrah of mesic origin, grown near Montpellier, France and Geisenheim, Germany. Syrah maintained similar maximum stomatal conductance (gmax) and maximum leaf photosynthesis (Amax) values than Grenache at lower predawn leaf water potentials, Ψleaf, throughout the season. The Ψleaf of Syrah decreased strongly during the day and was lower in stressed than in watered plants, showing anisohydric stomatal behaviour. In contrast, Grenache showed isohydric stomatal behaviour in which Ψleaf did not drop significantly below the minimum Ψleaf of watered plants. When g was plotted versus leaf specific hydraulic conductance, Kl, incorporating leaf transpiration rate and whole‐plant water potential gradients, previous differences between varieties disappeared both on a seasonal and diurnal scale. This suggested that isohydric and anisohydric behaviour could be regulated by hydraulic conductance. Pressure‐flow measurements on excised organs from plants not previously stressed revealed that Grenache had a two‐ to three‐fold larger hydraulic conductance per unit path length (Kh) and a four‐ to six‐fold larger leaf area specific conductivity (LSC) in leaf petioles than Syrah. Differences between internodes were only apparent for LSC and were much smaller. Cavitation detected as ultrasound acoustic emissions on air‐dried shoots showed higher rates for Grenache than Syrah during the early phases of the dry‐down. It is hypothesized that the differences in water‐conducting capacity of stems and especially petioles may be at the origin of the near‐isohydric and anisohydric behaviour of g.  相似文献   

13.
We investigated how leaf hydraulic conductance (Kleaf) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO2 concentrations (CO2a and CO2e, respectively). We also examined how Kleaf varies with changes in reference leaf water potential (Ψleaf‐ref) and stomatal conductance (gs‐ref) calculated at vapour pressure deficit, D of 1 kPa. We detected significant reductions in Kleaf caused by N and CO2e, but neither treatment affected pre‐dawn or midday Ψleaf. We also detected a significant CO2e‐induced reduction in gs‐ref and Ψleaf‐ref. Among treatments, the sensitivity of Kleaf to Ψleaf was directly related to a reference Kleaf (Kleaf‐ref computed at Ψleaf‐ref). This liquid‐phase response was reflected in a similar gas‐phase response, with gs sensitivity to D proportional to gs‐ref. Because leaves represented a substantial component of the whole‐tree conductance, reduction in Kleaf under CO2e affected whole‐tree water use by inducing a decline in gs‐ref. The consequences of the acclimation of leaves to the treatments were: (1) trees growing under CO2e controlled morning leaf water status less than CO2a trees resulting in a higher diurnal loss of Kleaf; (2) the effect of CO2e on gs‐ref was manifested only during times of high soil moisture.  相似文献   

14.
A model of maize stomatal behaviour has been developed, in which stomatal conductance is linked to the concentration of abscisic acid ([ABA]) in the xylem sap, with a sensitivity dependent upon the leaf water potential (Ψ1). It was tested against two alternative hypotheses, namely that stomatal sensitivity to xylem [ABA] would be linked to the leaf-to-air vapour pressure difference (VPD), or to the flux of ABA into the leaf. Stomatal conductance (gs) was studied: (1) in field-grown plants whose xylem [ABA] and Ψ1 depended on soil water status and evaporative demand; (2) in field-grown plants fed with ABA solutions such that xylem [ABA] was artificially raised, thereby decreasing gs and increasing Ψ1 and leaf-to-air VPD; and (3) in ABA-fed detached leaves exposed to varying evaporative demands, but with a constant and high Ψ1. The same relationships between gs, xylem [ABA] and Ψ1, showing lower stomatal sensitivity to [ABA] at high Ψ1, applied whether variations in xylem [ABA] were due to natural increase or to feeding, and whether variations in Ψ1, were due to changes in evaporative demand or to the increased Ψ1 observed in ABA-fed plants. Conversely, neither the leaf-to-air VPD nor the ABA flux into the leaf accounted for the observed changes in stomatal sensitivity to xylem [ABA]. The model, using parameters calculated from previous field data and the detached-leaf data, was tested against the observations of both ABA-fed and droughted plants in the field. It accounted with reasonable accuracy for changes in gs (r2 ranging from 0.77 to 0.81). These results support the view that modelling of stomatal behaviour requires consideration of both chemical and hydraulic aspects of root-to-shoot communication.  相似文献   

15.
Identifying the drivers of stomatal closure and leaf damage during stress in grasses is a critical prerequisite for understanding crop resilience. Here, we investigated whether changes in stomatal conductance (gs) during dehydration were associated with changes in leaf hydraulic conductance (Kleaf), xylem cavitation, xylem collapse, and leaf cell turgor in wheat (Triticum aestivum). During soil dehydration, the decline of gs was concomitant with declining Kleaf under mild water stress. This early decline of leaf hydraulic conductance was not driven by cavitation, as the first cavitation events in leaf and stem were detected well after Kleaf had declined. Xylem vessel deformation could only account for <5% of the observed decline in leaf hydraulic conductance during dehydration. Thus, we concluded that changes in the hydraulic conductance of tissues outside the xylem were responsible for the majority of Kleaf decline during leaf dehydration in wheat. However, the contribution of leaf resistance to whole plant resistance was less than other tissues (<35% of whole plant resistance), and this proportion remained constant as plants dehydrated, indicating that Kleaf decline during water stress was not a major driver of stomatal closure.  相似文献   

16.
Midday depressions in stomatal conductance (gs) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday gs, the coordination between leaf and stem hydraulics and whether regulation of midday gs differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday gs of co‐occurring deciduous and evergreen tree species. Midday gs was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher gs at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and gs at midday than evergreen species. Our results suggest that midday gs is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.  相似文献   

17.
The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse‐grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well‐watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs) and leaf water potential (Ψleaf) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X‐ABA]leaf) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs, but [X‐ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA‐induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.  相似文献   

18.
The lignification of the leaf vein bundle sheath (BS) has been observed in many species and would reduce conductance from xylem to mesophyll. We hypothesized that lignification of the BS in lower‐order veins would provide benefits for water delivery through the vein hierarchy but that the lignification of higher‐order veins would limit transport capacity from xylem to mesophyll and leaf hydraulic conductance (Kleaf). We further hypothesized that BS lignification would mediate the relationship of Kleaf to vein length per area. We analysed the dependence of Kleaf, and its light response, on the lignification of the BS across vein orders for 11 angiosperm tree species. Eight of 11 species had lignin deposits in the BS of the midrib, and two species additionally only in their secondary veins, and for six species up to their minor veins. Species with lignification of minor veins had a lower hydraulic conductance of xylem and outside‐xylem pathways and lower Kleaf. Kleaf could be strongly predicted by vein length per area and highest lignified vein order (R2 = .69). The light‐response of Kleaf was statistically independent of BS lignification. The lignification of the BS is an important determinant of species variation in leaf and thus whole plant water transport.  相似文献   

19.
美国海滨桤木和薄叶桤木水分生理特性的比较   总被引:1,自引:0,他引:1       下载免费PDF全文
采取盆栽、人工控水的方式, 研究并比较了美国本土海滨桤木(Alnus maritima)和薄叶桤木(A. incana)的气孔导度(Gs)、叶片水势(ψleaf)以及渗透调节能力对土壤水分条件的响应, 以探讨引起两种桤木生态分布差异巨大的生理生态原因。结果表明: 1)正常水分条件下, 海滨桤木的Gs低于薄叶桤木, 其与大气温度、相对湿度和水蒸气亏缺等气象因子的相关性低于薄叶桤木; 干旱胁迫下, 海滨桤木的Gs对其自身ψleaf下降信号的敏感度低于薄叶桤木; 复水后, 其Gs恢复更为缓慢。2)正常水分条件下, 海滨桤木的ψleaf高于薄叶桤木, 且引起气孔关闭的ψleaf临界值较高; 干旱胁迫下, 海滨桤木的ψleaf下降幅度高于薄叶桤木。3)正常水分条件下, 海滨桤木和薄叶桤木的渗透调节能力无显著差异; 干旱胁迫下, 尽管两种桤木均表现出饱和状态渗透势(ψssat)下降、膨压与水势关系的最大变化率降低、初始失膨点渗透势(ψstlp)增加、细胞渗透调节能力范围(ψssat-ψstlp, Dψs)减小的趋势, 但与薄叶桤木相比, 海滨桤木的ψstlp较高, Dψs较小。从以上生理生态指标可以看出, 较高的叶片水势、较低的气孔调节能力、干旱下较低的渗透调节能力是造成海滨桤木分布范围狭小的重要原因。  相似文献   

20.
Augé RM  Toler HD  Sams CE  Nasim G 《Mycorrhiza》2008,18(3):115-121
Stomatal conductance (g s) and transpiration rates vary widely across plant species. Leaf hydraulic conductance (k leaf) tends to change with g s, to maintain hydraulic homeostasis and prevent wide and potentially harmful fluctuations in transpiration-induced water potential gradients across the leaf (ΔΨ leaf). Because arbuscular mycorrhizal (AM) symbiosis often increases g s in the plant host, we tested whether the symbiosis affects leaf hydraulic homeostasis. Specifically, we tested whether k leaf changes with g s to maintain ΔΨ leaf or whether ΔΨ leaf differs when g s differs in AM and non-AM plants. Colonization of squash plants with Glomus intraradices resulted in increased g s relative to non-AM controls, by an average of 27% under amply watered, unstressed conditions. Stomatal conductance was similar in AM and non-AM plants with exposure to NaCl stress. Across all AM and NaCl treatments, k leaf did change in synchrony with g s (positive correlation of g s and k leaf), corroborating leaf tendency toward hydraulic homeostasis under varying rates of transpirational water loss. However, k leaf did not increase in AM plants to compensate for the higher g s of unstressed AM plants relative to non-AM plants. Consequently, ΔΨ leaf did tend to be higher in AM leaves. A trend toward slightly higher ΔΨ leaf has been observed recently in more highly evolved plant taxa having higher productivity. Higher ΔΨ leaf in leaves of mycorrhizal plants would therefore be consistent with the higher rates of gas exchange that often accompany mycorrhizal symbiosis and that are presumed to be necessary to supply the carbon needs of the fungal symbiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号