首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The release of extracellular vesicles (EV) by fungal organisms is considered an alternative transport mechanism to trans‐cell wall passage of macromolecules. Previous studies have revealed the presence of EV in culture supernatants from fungal pathogens, such as Cryptococcus neoformans, Histoplasma capsulatum, Paracoccidioides brasiliensis, Sporothrix schenckii, Malassezia sympodialis and Candida albicans. Here we investigated the size, composition, kinetics of internalization by bone marrow‐derived murine macrophages (MO) and dendritic cells (DC), and the immunomodulatory activity of C. albicans EV. We also evaluated the impact of EV on fungal virulence using the Galleria mellonella larvae model. By transmission electron microscopy and dynamic light scattering, we identified two populations ranging from 50 to 100 nm and 350 to 850 nm. Two predominant seroreactive proteins (27 kDa and 37 kDa) and a group of polydispersed mannoproteins were observed in EV by immunoblotting analysis. Proteomic analysis of C. albicans EV revealed proteins related to pathogenesis, cell organization, carbohydrate and lipid metabolism, response to stress, and several other functions. The major lipids detected by thin‐layer chromatography were ergosterol, lanosterol and glucosylceramide. Short exposure of MO to EV resulted in internalization of these vesicles and production of nitric oxide, interleukin (IL)‐12, transforming growth factor‐beta (TGF‐β) and IL‐10. Similarly, EV‐treated DC produced IL‐12p40, IL‐10 and tumour necrosis factor‐alpha. In addition, EV treatment induced the up‐regulation of CD86 and major histocompatibility complex class‐II (MHC‐II). Inoculation of G. mellonella larvae with EV followed by challenge with C. albicans reduced the number of recovered viable yeasts in comparison with infected larvae control. Taken together, our results demonstrate that C. albicans EV were immunologically active and could potentially interfere with the host responses in the setting of invasive candidiasis.  相似文献   

2.
Deletion of DNA polymerase eta (Rad30/Polη) in pathogenic yeast Candida albicans is known to reduce filamentation induced by serum, ultraviolet, and cisplatin. Because nonfilamentous C. albicans is widely accepted as avirulent form, here we explored the virulence and pathogenicity of a rad30Δ strain of C. albicans in cell‐based and animal systems. Flow cytometry of cocultured fungal and differentiated macrophage cells revealed that comparatively higher percentage of macrophages was associated with the wild‐type than rad30Δ cells. In contrast, higher number of Polη‐deficient C. albicans adhered per macrophage membrane. Imaging flow cytometry showed that the wild‐type C. albicans developed hyphae after phagocytosis that caused necrotic death of macrophages to evade their clearance. Conversely, phagosomes kill the fungal cells as estimated by increased metacaspase activity in wild‐type C. albicans. Despite the morphological differences, both wild‐type and rad30? C. albicans were virulent with a varying degree of pathogenicity in mice models. Notably, mice with Th1 immunity were comparatively less susceptible to systemic fungal infection than Th2 type. Thus, our study clearly suggests that the modes of interaction of morphologically different C. albicans strains with the host immune cells are diverged, and host genetic background and several other attributing factors of the fungus could additionally determine their virulence.  相似文献   

3.
Summary The authors succeeded in establishing a murine model of systemic candidiasis being disseminated from the primary gastrointestinal lesions caused by oral inoculation of Candida albicans. Using this model, an attempt was made for detecting the Candida antigen by enzyme-linked immunosorbent assay using avidin-biotin (AB-ELISA) from the serum of infected mice.Gastrointestinal candidiasis was formed in all of the 20 mice treated with the drugs (antibiotics, antineoplastic agents, hydrocortisone, etc.) and inoculated orally with C. albicans. Fourteen of these mice suffered from submucosal candidiasis, and C. albicans was cultured from the visceral organs in 12 of them. The assay by AB-ELISA was able to detect 1.0 ng/ml Candida mannan in the mouse serum. The Candida antigen was detected in the sera of 11 of the 14 mice with submucosal candidiasis. However, the antigen could not be detected in the sera of the 6 mice with intramucosal candidiasis.The assay by AB-ELISA is more sensitive and specific for the diagnosis of systemic candidiasis than other serological assays.  相似文献   

4.
Abstract

Candida albicans biofilms are responsible for oral candidiasis. Fluoxetine is a widely used antidepressant, with certain anti-Candida activities. The antifungal activity of fluoxetine combined with various antifungals against C. albicans biofilms and oral candidiasis was evaluated in this study. The morphological change in the inhibition of fluoxetine on C. albicans biofilms was observed using SEM. The interactions between fluoxetine and antifungals against C. albicans biofilms were evaluated using microdilution checkerboard methods, FICI and the ΔE model. The synergistic combination was tested in vivo on the mice model of oral candidiasis. SEM imaging showed fluoxetine inhibited hyphal growth and biofilm formation. Fluoxetine combined with caspofungin exhibited synergistic effects against C. albicans biofilms. Antagonistic effects occurred when fluoxetine was combined with amphotericin B or terbinafine. Further, the fluoxetine combined with caspofungin significantly reduced the lesion score and CFU of C. albicans on the murine tongue (p?<?0.05), and relieved oral candidiasis of the infected mice.  相似文献   

5.
Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole‐resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane‐disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head‐to‐head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole‐resistant C. albicans. The 11‐residue peptide, P11‐6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time‐kill assay to gauge its potential for further drug development. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
We have evaluated the effect of antibodies against the Candida albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a potential immunotherapeutic treatment for acute invasive candidiasis in a murine model of infection. Three different approaches were assayed: (i) active immunization of mice using recombinant His-tagged GAPDH, (ii) treatment of fungal yeast cells with anti-GAPDH antibodies prior to infection, and (iii) passive transfer of polyclonal anti-GAPDH antibodies. Results showed that all three approaches, although tending to show a slight beneficial effect in some instances, fail to have a relevant and statistically significant effect on the infection course, determined by survival curves and fungal burden in kidneys. This suggests that the cell wall-associated GAPDH of C. albicans, despite its potential role in virulence, does not appear to be a suitable target protein for the development of immunotherapeutic strategies against candidiasis, although further studies may be required to confirm this observation.  相似文献   

7.
The major fungal pathogen Candida albicans has the metabolic flexibility to assimilate a wide range of nutrients in its human host. Previous studies have suggested that C. albicans can encounter glucose‐poor microenvironments during infection and that the ability to use alternative non‐fermentable carbon sources contributes to its virulence. JEN1 encodes a monocarboxylate transporter in C. albicans and we show that its paralogue, JEN2, encodes a novel dicarboxylate plasma membrane transporter, subjected to glucose repression. A strain deleted in both genes lost the ability to transport lactic, malic and succinic acids by a mediated mechanism and it displayed a growth defect on these substrates. Although no significant morphogenetic or virulence defects were found in the double mutant strain, both JEN1 and JEN2 were strongly induced during infection. Jen1‐GFP (green fluorescent protein) and Jen2‐GFP were upregulated following the phagocytosis of C. albicans cells by neutrophils and macrophages, displaying similar behaviour to an Icl1‐GFP fusion. In the murine model of systemic candidiasis approximately 20–25% of C. albicans cells infecting the kidney expressed Jen1‐GFP and Jen2‐GFP. Our data suggest that Jen1 and Jen2 are expressed in glucose‐poor niches within the host, and that these short‐chain carboxylic acid transporters may be important in the early stages of infection.  相似文献   

8.
Proteinases produced by Candida albicans are one kind of virulence factor expressed that contribute to adherence and invasion of host tissue. Proteinase inhibitor of human immunodeficiency virus in experimental candidiasis suggested reduction in fungal infection, and medicinal plants could be a source of alternative agent to prevent diseases. In this study, we investigated the production of proteinases by C. albicans from clinical isolates and the action of plant extracts against strains of C. albicans and its synthesized proteinases, comparing with antifungal fluconazole and amphotericin B and proteinase inhibitors pepstatin A, amprenavir, and ritonavir. The results reported here showed that these extracts have a certain kind of action and that the search for new antifungal agents could be found at the plants.  相似文献   

9.
Candida albicans causes the majority of invasive candidiasis in immunocompromised adults while Candida parapsilosis is a leading cause of neonatal candidiasis. While much work has focused on how the immune system recognizes and responds to C. albicans, less is known about host interaction with C. parapsilosis. This study investigates the human neutrophil phagocytic response to these species. Neutrophils underwent phagocytosis of C. parapsilosis yeast and C. albicans hyphae much more efficiently than C. albicans yeast. Treatment of neutrophils with a galectin‐3 (gal3) blocking antibody inhibited phagocytosis of C. parapsilosis yeast and C. albicans hyphae, but not C. albicans yeast. The majority of neutrophil gal3 was expressed intracellularly and was secreted from neutrophils after treatment with C. parapsilosis mannan. When neutrophils were treated with exogenous gal3, phagocytosis of both C. albicans and C. parapsilosis yeast increased. Exposure of neutrophils to C. parapsilosis yeast increased phagocytosis of C. albicans yeast and was inhibited by gal3 blocking antibody. Taken together, these data indicate that gal3 secreted from neutrophils may act as a pro‐inflammatory autocrine/paracrine signal in neutrophil phagocytosis and suggest that gal3 has a unique role in neutrophil response to C. parapsilosis yeast and C. albicans hyphae distinct from C. albicans yeast.  相似文献   

10.
The prophylactic effects of heat-killed cells of Enterococcus faecalis FK-23 (FK-23 preparation) on experimental candidiasis were investigated in normal and leukopenic mice. In cyclophosphamide-induced leukopenic mice, oral or intraperitoneal administration of the FK-23 preparation at a daily dose of 1.25 or 5 mg/mouse for 3 consecutive days prior to Candida albicans infection significantly prolonged survival periods of the infected mice, and decreased viable counts of C. albicans recovered from their kidneys. In normal mice, the FK-23 preparation administered at dosages ranging from 0.63 to 10 mg/mouse/day for 3 consecutive days was ineffective, while in leukopenic mice, the FK-23 administered orally caused a facilitated recovery in the number of white blood cells including neutrophils. Furthermore, intraperitoneal administration of the FK-23 preparation into mice augmented the anti-Candida activity of immunocompromised peritoneal exudate cells obtained from the animals. These results suggested the potential usefulness of the FK-23 preparation as a prophylactic agent for the management of patients with opportunistic fungal infections.  相似文献   

11.
12.
Candida albicans is a major fungal pathogen, accounting for approximately 15% of healthcare infections with associated mortality as high as 40% in the case of systemic candidiasis. Antifungal agents for C. albicans infections are limited, and rising resistance is an inevitable problem. Therefore, understanding the mechanism behind antifungal responses is among the top research focuses in combating Candida infections. Herein, the recently developed C. albicans haploid model is employed to examine the association between mitochondrial fission, regulated by Dnm1, and the pathogen's response to antifungals. Proteomic analysis of dnm1Δ and its wild‐type haploid parent, GZY803, reveal changes in proteins associated with mitochondrial structures and functions, cell wall, and plasma membrane. Antifungal susceptibility testing revealed that dnm1Δ is more susceptible to SM21, a novel antifungal, than GZY803. Analyses of reactive oxygen species release, antioxidant response, lipid peroxidation, and membrane damages uncover an association between dnm1Δ and the susceptibility to SM21. Dynasore‐induced mitochondrial inhibition in SC5314 diploids corroborate the findings. Interestingly, Dynasore‐primed SC5314 cultures exhibit increased susceptibility to all antifungals tested. These data suggest an important contribution of mitochondrial fission in antifungal susceptibility of C. albicans. Hence, mitochondrial fission can be a potential target for combined therapy in anti‐C. albicans treatment.  相似文献   

13.
The animal models available for studying the immune response to genital tract infection require induction of a pseudo estrous state, usually achieved by administration of 17-β-estradiol. In our experimental model of vaginal candidiasis, under pseudo estrus, different strains of mice were used. We observed major differences in the clearance of Candida albicans infection among the different strains, ascribable to differing susceptibility to estradiol treatment. In the early phase of infection CD1, BALB/c, C57BL/6 albino and C57BL/6 mice were colonized to similar levels, while in the late phase of infection, BALB/c mice, which are considered genetically resistant to C. albicans infection, exhibited greater susceptibility to vaginal candidiasis than CD1 and C57BL/6 albino strains of mice. This was because estradiol induced “per se” enlarged and fluid-filled uteri, more pronounced in infected mice and consistently more evident in BALB/c and C57BL/6 mice than in CD1 mice. Unlike CD1, BALB/c and C57BL/6 mice showed a heavy fungal colonization of the uterus, even though C57BL/6 mice apparently cleared C. albicans from the vagina. The presence of C. albicans in the vagina and uterus was accompanied by a heavy bacterial load. Collectively these observations prompted us to carry out a careful analysis of estradiol effects in a mouse model of vaginal infection.  相似文献   

14.
Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.  相似文献   

15.
IL-17 and related cytokines are direct and indirect targets of selective immunosuppressive agents for the treatment of autoimmune diseases and other diseases of pathologic inflammation. Insights into the potential adverse effects of IL-17 blockade can be drawn from the experience of patients with deficiencies in the IL-17 pathway. A unifying theme of susceptibility to mucocutaneous candidiasis is seen in both mice and humans with a variety of genetic defects that converge on this pathway. Mucocutaneous candidiasis is a superficial infection of mucosal, nail or skin surfaces usually caused by the fungal pathogen Candida albicans. The morbidity of the disease includes significant pain, weight loss and secondary complications, including carcinoma and aneurysms. This review describes the known human diseases associated with chronic mucocutaneous candidiasis (CMC) as well as the known and proposed connections to IL-17 signaling. The human diseases include defects in IL-17 signaling due to autoantibodies (AIRE deficiency), receptor mutations (IL-17 receptor mutations) or mutations in the cytokine genes (IL17F and IL17A). Hyper-IgE syndrome is characterized by elevated serum IgE, dermatitis and recurrent infections, including CMC due to impaired generation of IL-17-producing Th17 cells. Mutations in STAT1, IL12B and IL12RB1 result in CMC secondary to decreased IL-17 production through different mechanisms. Dectin-1 defects and CARD9 defects result in susceptibility to C. albicans because of impaired host recognition of the pathogen and subsequent impaired generation of IL-17-producing T cells. Thus, recent discoveries of genetic predisposition to CMC have driven the recognition of the role of IL-17 in protection from mucosal fungal infection and should guide counseling and management of patients treated with pharmacologic IL-17 blockade.  相似文献   

16.
A hallmark of the mucosa of immunocompromized hosts in oral candidiasis is a hyperkeratinized region heavily colonized with fungi at the surface of the terminally differentiated epithelium. To gain insight into the processes important for promoting mucosal invasion by fungi, we characterized the response of keratinocytes to the presence of Candida albicans. Indirect immunofluorescence and kymographic analyses revealed a multifaceted keratinocyte response of OKF6/TERT‐2 cells to C. albicans that consisted of: cytoskeletal reorganization within 3 h, motility and cell expansion with formation of E‐cadherin‐mediated cell–cell adhesions within 6 h, increased expression of late differentiation markers and decreased expression of calprotectin. The initial expansive phase was followed by dissolution of cell–cell adhesions and a decrease in cell size accompanied by loss of E‐cadherin. The keratinocyte response depended on soluble factors associated with hyphal growth as demonstrated using the efg1Δ/efg1Δ, cap1Δ/cap1Δ, als3Δ/als3Δ, hwp1Δ/hwp1Δand sap4–6Δ/sap4–6Δ mutants and was not observed in the presence of the non‐pathogenic yeast, Saccharomyces cerevisiae. These studies show the potential for C. albicans to manipulate the stratified epithelial cells to a state of differentiation that is more permissive of fungal colonization of oral tissue, which is likely to play an important role in the pathogenesis of candidiasis.  相似文献   

17.
Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa.  相似文献   

18.
Disseminated Candida albicans infection results in high morbidity and mortality despite treatment with existing antifungal drugs. Recent studies suggest that modulating the host immune response can improve survival, but specific host targets for accomplishing this goal remain to be identified. The extracellular matrix protein thrombospondin-1 is released at sites of tissue injury and modulates several immune functions, but its role in C. albicans pathogenesis has not been investigated. Here, we show that mice lacking thrombospondin-1 have an advantage in surviving disseminated candidiasis and more efficiently clear the initial colonization from kidneys despite exhibiting fewer infiltrating leukocytes. By examining local and systemic cytokine responses to C. albicans and other standard inflammatory stimuli, we identify a crucial function of phagocytes in this enhanced resistance. Subcutaneous air pouch and systemic candidiasis models demonstrated that endogenous thrombospondin-1 enhances the early innate immune response against C. albicans and promotes activation of inflammatory macrophages (inducible nitric oxide synthase+, IL-6high, TNF-αhigh, IL-10low), release of the chemokines MIP-2, JE, MIP-1α, and RANTES, and CXCR2-driven polymorphonuclear leukocytes recruitment. However, thrombospondin-1 inhibited the phagocytic capacity of inflammatory leukocytes in vivo and in vitro, resulting in increased fungal burden in the kidney and increased mortality in wild type mice. Thus, thrombospondin-1 enhances the pathogenesis of disseminated candidiasis by creating an imbalance in the host immune response that ultimately leads to reduced phagocytic function, impaired fungal clearance, and increased mortality. Conversely, inhibitors of thrombospondin-1 may be useful drugs to improve patient recovery from disseminated candidiasis.  相似文献   

19.
Gut microbes symbiotically colonize the gastrointestinal (GI) tract, interacting with each other and their host to maintain GI tract homeostasis. Recent reports have shown that gut microbes help protect the gut from colonization by pathogenic microbes. Here, we report that commensal microbes prevent colonization of the GI tract by the pathogenic fungus, Candida albicans. Wild‐type specific pathogen‐free (SPF) mice are resistant to C. albicans colonization of the GI tract. However, administering certain antibiotics to SPF mice enables C. albicans colonization. Quantitative kinetics of commensal bacteria are inversely correlated with the number of C. albicans in the gut. Here, we provide further evidence that transplantation of fecal microbiota is effective in preventing Candida colonization of the GI tract. These data demonstrate the importance of commensal bacteria as a barrier for the GI tract surface and highlight the potential clinical applications of commensal bacteria in preventing pathogenic fungal infections.  相似文献   

20.
Galleria mellonella has been described as a cheap and an easy-to-reproduce model for the study of fungal infections. We hypothesized that yeasts with higher virulence potential decrease survival and significantly trigger an immune response in G. mellonella through the regulation of innate immunity-related genes encoding antimicrobial peptides (AMPs) such as gallerimycin and galiomicin. Candida albicans SC5314 and Candida dubliniensis CBS 7987, selected because of their different virulence potential, were used for a killing assay followed by the determination of gene expression using qPCR. In vivo results confirmed a significantly (p?=?0.0321) lower pathogenicity for C. dubliniensis than for C. albicans. Accordingly, the induction of C. dubliniensis AMPs was lower at all the selected time points post-infection (1 h, 24 h, 48 h). Moreover, we observed an extremely high regulation of the galiomicin gene compared to the gallerimycin one, suggesting a different role of the tested AMPs in protecting G. mellonella from candidiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号