首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perennial grasses are promising candidates for bioenergy crops, but species that can escape cultivation and establish self‐sustaining naturalized populations (feral) may have the potential to become invasive. Fertile Miscanthus × giganteus, known as “PowerCane,” is a new potential biofuel crop. Its parent species are ornamental, non‐native Miscanthus species that establish feral populations and are sometimes invasive in the USA. As a first step toward assessing the potential for “PowerCane” to become invasive, we documented its growth and fecundity relative to one of its parent species (Miscanthus sinensis) in competition with native and invasive grasses in common garden experiments located in Columbus, Ohio and Ames, Iowa, within the targeted range of biofuel cultivation. We conducted a 2‐year experiment to compare growth and reproduction among three Miscanthus biotypes—”PowerCane,” ornamental M. sinensis, and feral M. sinensis—at two locations. Single Miscanthus plants were subjected to competition with a native grass (Panicum virgatum), a weedy grass (Bromus inermis), or no competition. Response variables were aboveground biomass, number of shoots, basal area, and seed set. In Iowa, all Miscanthus plants died after the first winter, which was unusually cold, so no further results are reported from the Iowa site. In Ohio, we found significant differences among biotypes in growth and fecundity, as well as significant effects of competition. Interactions between these treatments were not significant. “PowerCane” performed as well or better than ornamental or feral M. sinensis in vegetative traits, but had much lower seed production, perhaps due to pollen limitation. In general, ornamental M. sinensis performed somewhat better than feral M. sinensis. Our findings suggest that feral populations of “PowerCane” could become established adjacent to biofuel production areas. Fertile Miscanthus × giganteus should be studied further to assess its potential to spread via seed production in large, sexually compatible populations.  相似文献   

2.
Die‐back disease caused by Phomopsis (Diaporthe) azadirachtae is the devastating disease of Azadirachta indica. Accurate identification of P. azadirachtae is always problematic due to morphological plasticity and delayed appearance of conidia. A species‐specific PCR‐based assay was developed for rapid and reliable identification of P. azadirachtae by designing a species‐specific primer‐targeting ITS region of P. azadirachtae isolates. The assay was validated with DNA isolated from different Phomopsis species and other fungal isolates. The PCR assay amplified 313‐bp product from all the isolates of P. azadirachtae and not from any other Phomopsis species or any genera indicating its specificity. The assay successfully detected the pathogen DNA in naturally and artificially infected neem seeds and twigs indicating its applicability in seed quarantine and seed health testing. The sensitivity of the assay was 100 fg when genomic DNA of all isolates was analysed. The PCR‐based assay was 92% effective in comparison with seed plating technique in detecting the pathogen. This is the first report on the development of species‐specific PCR assay for identification and detection of P. azadirachtae. Thus, PCR‐based assay developed is very specific, rapid, confirmatory and sensitive tool for detection of pathogen P. azadirachtae at early stages.  相似文献   

3.
Foliicolous lichens are formed by diverse, highly specialized fungi that establish themselves and complete their life cycle within the brief duration of their leaf substratum. Over half of these lichen‐forming fungi are members of either the Gomphillaceae or Pilocarpaceae, and associate with Trebouxia‐like green algae whose identities have never been positively determined. We investigated the phylogenetic affinities of these photobionts to better understand their role in lichen establishment on an ephemeral surface. Thallus samples of Gomphillaceae and Pilocarpaceae were collected from foliicolous communities in southwest Florida and processed for sequencing of photobiont marker genes, algal cultivation and/or TEM. Additional specimens from these families and also from Aspidothelium (Thelenellaceae) were collected from a variety of substrates globally. Sequences from rbcL and nuSSU regions were obtained and subjected to Maximum Likelihood and Bayesian analyses. Analysis of 37 rbcL and 7 nuSSU algal sequences placed all photobionts studied within the provisional trebouxiophycean assemblage known as the Watanabea clade. All but three of the sequences showed affinities within Heveochlorella, a genus recently described from tree trunks in East Asia. The photobiont chloroplast showed multiple thylakoid stacks penetrating the pyrenoid centripetally as tubules lined with pyrenoglobuli, similar to the two described species of Heveochlorella. We conclude that Heveochlorella includes algae of potentially major importance as lichen photobionts, particularly within (but not limited to) foliicolous communities in tropical and subtropical regions worldwide. The ease with which they may be cultivated on minimal media suggests their potential to thrive free‐living as well as in lichen symbiosis.  相似文献   

4.
5.
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state‐of‐the‐art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.  相似文献   

6.
Epidermal fatty acid‐binding protein (E‐FABP/FABP5/DA11) binds and transport long‐chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E‐FABP protects nerve growth factor‐differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM‐induced lipotoxicity (PAM‐LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E‐FABP. Antioxidants MCI‐186 and N‐acetyl cysteine prevented E‐FABP's induction in expression by PAM‐LTx, while tert‐butyl hydroperoxide increased ROS and E‐FABP expression. Non‐metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E‐FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE‐FABP showed reduced E‐FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E‐FABP cellular levels by pre‐loading the cells with recombinant E‐FABP diminished the PAM‐induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E‐FABP expression and enhanced the resistance of NGFDPC12 cells to PAM‐LTx. We conclude that E‐FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS.

  相似文献   


7.
The Asian Long‐horned Beetle (ALB) is a highly polyphagous species invasive in North America and Europe. This species has been reported to have low dispersing potential, but long‐distance dispersal could occasionally happen. We conducted a preliminary study on laboratory‐reared adults from invasive populations to measure the flying potential of beetles using computer‐linked flight mills. Under standardized conditions, ALB was capable of flying over longer distances than previously described. The highest distance recorded over an adult lifespan outreached 14 km. Flight mill method is therefore useful to estimate the maximum physiological flight abilities of the species that should be taken into account to improve management of invasive populations.  相似文献   

8.
9.
Downy mildew, caused by the oomycete pathogen Peronospora belbahrii, is a devastating foliar disease of basil in the United States and worldwide. Currently there are very few chemistries or organic choices registered to control this disease. In this study, two systemic acquired resistance (SAR) inducers, acibenzolar‐S‐methyl (ASM) and β‐aminobutyric acid (BABA), were evaluated for their in vitro effects on the pathogen, for their potential to control basil downy mildew in greenhouses, and for changes in peroxidase activity in basil plants treated with these two SAR inducers. No significant inhibition of sporangial germination was detected in water agar amended with ASM at concentrations lower than 100 mg/l or with BABA at concentrations lower than 500 mg/l. Efficacy of ASM and BABA in greenhouses varied depending on the rate, method and timing of application. The area under the disease progress curve (AUDPC) of disease severity was significantly reduced compared to the non‐treated control when ASM was sprayed (in all experiments) or drenched (in one out of two experiments) pre‐, or pre‐ + post‐inoculation at rates of 25–400 mg/l. Three weekly post‐inoculation sprays of ASM at the rate of 50 mg/l reduced AUDPC by 93.0 and 47.2% when started 3 and 7 days after inoculation (DAI), respectively. The AUDPC of disease severity was also significantly reduced when BABA was sprayed pre‐ + post‐inoculation at rates of 125–500 mg/l. According to the prediction using a log‐logistic function, 50% maximum disease protection was achieved at a concentration of 27.5 mg/l of ASM. Basil plants treated with these two SAR inducers and challenged with the pathogen showed significantly higher peroxidase activity than the non‐treated control at 8 DAI. Temporally, the highest activity of peroxidase was detected at 8 DAI, decreased at 15 DAI and waned further at 23 DAI.  相似文献   

10.
11.
12.
The coccoid glaucophyte genus Glaucocystis is characterized by having a thick cell wall, which has to date prohibited examination of the native ultrastructural features of the protoplast periphery. Recently, however, the three‐dimensional (3‐D) ultrastructure of the protoplast periphery was revealed in two divergent Glaucocystis species, with the world's most powerful ultra‐high voltage electron microscope (UHVEM). The two species exhibit morphological diversity in terms of their 3‐D ultrastructural features. However, these two types do not seem to encompass actual ultrastructural diversity in the genetically diverse genus Glaucocystis. Here, we report a new type of peripheral 3‐D ultrastructure resolved in “G. incrassata” SAG 229‐2 cells by 3‐D modeling based on UHVEM tomography using high‐pressure freezing and freeze‐substitution fixation. The plasma membrane and underlying flattened vesicles in “G. incrassata” SAG 229‐2 exhibited grooves at intervals of 200–600 nm, and the flattened vesicles often overlapped one another at the protoplast periphery. This 3‐D ultrastructure differs from those of the two types previously reported in other species of Glaucocystis. The possibility of classification of Glaucocystis species based on the 3‐D ultrastructure of the protoplast periphery is discussed.  相似文献   

13.
We present phylogenetic analyses (parsimony, maximum likelihood and Bayesian inference) for 69 lineages of anthoathecate hydroids based on 18 morphological characters (12 proposed for the first time) plus mitochondrial (16S and COI) and nuclear (18S and 28S) molecular markers. This study aims to test the monophyly of the present concept of the family Bougainvilliidae, assessing its phylogenetic position within Hydroidolina. Our working hypothesis is used as a context for inferring the evolution of certain morphological characters, focusing on the exoskeleton. Our results shed light on some phylogenetic uncertainties within Hydroidolina, delimiting eight well‐supported linages, viz. Hydroidolina, Siphonophorae, Leptothecata, Aplanulata, Filifera II, Filifera III, Capitata and Pseudothecata taxon novum, the latter supported by four morphological synapomorphies. The monophyly of several families was not supported, viz. Bougainvilliidae, Cordylophoridae, Oceaniidae, Rathkeidae and Pandeidae. Some of the genera typically considered in Bougainvilliidae, including Bougainvillia, fell into the clade Pseudothecata, which is consistently reconstructed as the sister group of Leptothecata. We formally suggest that Dicoryne be removed from Bougainvilliidae and placed in the resurrected family Dicorynidae. The exoskeleton was a key feature in the diversification of Hydroidolina, especially with the transition from the bare hydranth to one completely enveloped within the exoskeleton. In this context, bougainvilliids exhibit several intermediate states in the development of the exosarc. Although the concatenated analysis unravels some interesting hypotheses, taxon sampling is still deficient and therefore more data are necessary for achieving a more complete understanding of the evolution and ecology of bougainvilliids and their allies.  相似文献   

14.
15.
  • Most plants that inhabit ant‐gardens (AGs) are cultivated by the ants. Some orchids occur in AGs; however, it is not known whether their seeds are dispersed by AG ants because most orchid seeds are tiny and dispersed by wind.
  • We performed in situ seed removal experiments, in which we simultaneously provided Azteca gnava ants with seeds of three AG orchid species and three other AG epiphyte species (Bromeliaceae, Cactaceae and Gesneriaceae), as well as the non‐AG orchid Catasetum integerrimum.
  • The seeds most removed were those of the bromeliad Aechmea tillandsioides and the gesneriad Codonanthe uleana, while seeds of AG orchids Coryanthes picturata, Epidendrum flexuosum and Epidendrum pachyrachis were less removed. The non‐AG orchid was not removed. Removal values were positively correlated with the frequency of the AG epiphytes in the AGs, and seeds of AG orchids were larger than those of non‐AG orchids, which should favour myrmecochory.
  • Our data show that Azt. gnava ants discriminate and preferentially remove seeds of the AG epiphytes. We report for the first time the removal of AG orchid seeds by AG ants in Neotropical AGs.
  相似文献   

16.
During recent work examining the effects of Bitou Bush (Chrysanthemoides monilifera ssp. rotundata) invasion on native reptile assemblages in coastal heathland vegetation in Eastern Australia, unplanned spot‐spraying of glyphosate occurred at some of our experimental sites invaded by Bitou Bush. We used this unexpected herbicide application as an opportunity to provide a preliminary assessment of the short‐term impacts on reptiles of glyphosate spot‐spraying of Bitou Bush. Using an M‐BARCI design, we compared reptile assemblages among uninvaded (reference) sites, invaded (control) sites and invaded and sprayed (impact) sites before and after spraying. We found no significant short‐term (7 – 10 months) differences in reptile abundance, species richness or assemblage composition among invaded, uninvaded and sprayed sites before and after glyphosate application. We cautiously interpret our results to generate a preliminary finding that spot‐spraying of Bitou Bush with glyphosate appears not to have a deleterious effect on reptile assemblages at seven and ten months following herbicide application. While we would not recommend basing management decisions on the outcomes of our study alone, we suggest that our findings can be used to assist in the development of strategic analyses of glyphosate impacts on native flora and fauna.  相似文献   

17.
Glycogen synthase kinase/SHAGGY‐like kinases (SKs) are a highly conserved family of signaling proteins that participate in many developmental, cell‐differentiation, and metabolic signaling pathways in plants and animals. Here, we investigate the involvement of SKs in legume nodulation, a process requiring the integration of multiple signaling pathways. We describe a group of SKs in the model legume Lotus japonicus (LSKs), two of which respond to inoculation with the symbiotic nitrogen‐fixing bacterium Mesorhizobium loti. RNAi knock‐down plants and an insertion mutant for one of these genes, LSK1, display increased nodulation. Ηairy‐root lines overexpressing LSK1 form only marginally fewer mature nodules compared with controls. The expression levels of genes involved in the autoregulation of nodulation (AON) mechanism are affected in LSK1 knock‐down plants at low nitrate levels, both at early and late stages of nodulation. At higher levels of nitrate, these same plants show the opposite expression pattern of AON‐related genes and lose the hypernodulation phenotype. Our findings reveal an additional role for the versatile SK gene family in integrating the signaling pathways governing legume nodulation, and pave the way for further study of their functions in legumes.  相似文献   

18.
Amidst the rapid advancement in next‐generation sequencing (NGS) technology over the last few years, salamanders have been left behind. Salamanders have enormous genomes—up to 40 times the size of the human genome—and this poses challenges to generating NGS data sets of quality and quantity similar to those of other vertebrates. However, optimization of laboratory protocols is time‐consuming and often cost prohibitive, and continued omission of salamanders from novel phylogeographic research is detrimental to species facing decline. Here, we use a salamander endemic to the southeastern United States, Plethodon serratus, to test the utility of an established protocol for sequence capture of ultraconserved elements (UCEs) in resolving intraspecific phylogeographic relationships and delimiting cryptic species. Without modifying the standard laboratory protocol, we generated a data set consisting of over 600 million reads for 85 P. serratus samples. Species delimitation analyses support recognition of seven species within P. serratus sensu lato, and all phylogenetic relationships among the seven species are fully resolved under a coalescent model. Results also corroborate previous data suggesting nonmonophyly of the Ouachita and Louisiana regions. Our results demonstrate that established UCE protocols can successfully be used in phylogeographic studies of salamander species, providing a powerful tool for future research on evolutionary history of amphibians and other organisms with large genomes.  相似文献   

19.

Questions

Can drainage ditches in agricultural marsh grassland provide a suitable habitat for the persistence of fen meadow species? How does the ditch margin vegetation develop as a function of regular dredging? Is ornithologically oriented management also beneficial for plant biodiversity?

Location

Riparian marshes, Eider‐Treene‐Sorge lowland, Schleswig‐Holstein, Germany.

Methods

We performed vegetation surveys of drainage ditches along with their water body, slope and margin structures annually for 3 years. The data were analysed with respect to date and means of ditch dredging. In addition, we recorded vegetation of the surrounding agricultural grassland, measured nutrient status of the soil and the water body and sampled seed bank of the ditch slopes. We used ANOVA and multivariate methods to describe the development of the ditch vegetation and the persistence of target meadow species.

Results

Vegetation re‐development of ditch margins proceeds quite rapidly after disturbance from dredging. Dominance of mudbank species was observed only in the first year, followed by an increase of reed species and reduction of phytodiversity. Target species of wet meadow communities reach highest abundance in the second and third year and build a significant seed bank before being suppressed by reeds.

Conclusions

In heavily eutrophicated, intensively used marsh grassland, regularly disturbed ditch margins are important secondary habitats for pioneer and subdominant wetland species, which have nearly disappeared in a larger area. Current management cycles of ditch dredging every 3–4 years comply with the successional development, allowing the mudbank and wet meadow species to persist in the vegetation and seed bank. In contrast to the frequency, the form of dredging (ditch profile), which is crucial for bird protection, plays a minor role for plants. We recommend moderate disturbance (mowing of ditch margins) to suppress strong competitors in the years between dredging for additional support to target plant species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号