首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leucine zipper-EF-hand–containing transmembrane protein 1 (LETM1) is a mitochondrial inner membrane protein that is highly expressed in various cancers. Although LETM1 is known to be associated with poor prognosis in colorectal cancer (CRC), its roles in autophagic cell death in CRC have not been explored. In this study, we examined the mechanisms through which LETM1 mediates autophagy in CRC. Our results showed that LETM1 was highly expressed in CRC tissues and that down-regulation of LETM1 inhibited cell proliferation and induced S-phase arrest. LETM1 silencing also suppressed cancer stem cell–like properties and induced autophagy in CRC cells. Additionally, the autophagy inhibitor 3-methyladenine reversed the inhibitory effects of LETM1 silencing on proliferation and stemness, whereas the autophagy activator rapamycin had the opposite effects. Mechanistically, suppression of LETM1 increased the levels of reactive oxygen species (ROS) and mitochondrial ROS by regulation of SOD2, which in turn activated AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), initiated autophagy, and inhibited proliferation and stemness. Our findings suggest that silencing LETM1 induced autophagy in CRC cells by triggering ROS-mediated AMPK/mTOR signalling, thus blocking CRC progression, which will enhance our understanding of the molecular mechanism of LETM1 in CRC.  相似文献   

2.
Objective: Elevated levels of arginine derivatives in the NO pathway, such as asymmetric dimethylarginine (ADMA), are related to disease severity and reduced exercise capacity in heart failure (HF). We investigated the influence of exercise intervention on these parameters and on L-arginine (L-Arg) and L-homoarginine (L-hArg) in HF with preserved ejection fraction (HFpEF) patients.

Material and methods: Sixty-two patients (65?±?6 years) were included in this analysis and randomized to supervised endurance/resistance training (ET) or to usual care (UC). EDTA-plasma was analysed for NO metabolites.

Results: There were baseline associations for adjusted values of maximum workload with ADMA (r=??0.322, p?=?0.028) and L-Arg/ADMA ratio (r?=?0.331, p?=?0.015), and for the 6-min walk test (6MWT) with ADMA (r=??0.314, p?=?0.024) and L-Arg/ADMA ratio (r?=?0.346, p?=?0.015). No significant differences between UC and ET changes of NO parameters were observed at 3-month follow-up. Higher L-hArg levels were associated with a greater improvement in peak oxygen uptake (peak O2) at follow-up: 3.4?±?2.8 vs. 1.1?±?2.9?mL/min/kg (p?=?0.005).

Conclusions: Exercise intervention did not influence NO parameters in HFpEF patients, but L-hArg was related to change in peak O2.  相似文献   

3.
Heart failure with preserved ejection fraction (HFpEF) is characterised by a high incidence of metabolic comorbidities that share the potential to induce both systemic and coronary microvascular inflammation and oxidative stress. These pathophysiological alterations contribute to increased passive stiffness of the myocardium and to diastolic dysfunction, both hallmarks of HFpEF. Passive myocardial stiffness depends mainly on two components: the extracellular matrix (ECM) and the cardiomyocytes. Quantitative and qualitative changes in collagen metabolism leading to myocardial fibrosis determine the ECM-based stiffness of the myocardium. Different noninvasive diagnostic tools to assess myocardial fibrosis are being developed, some of which have demonstrated to correlate with clinical status and prognosis. Cardiomyocytes mainly alter the passive stiffness through alterations in the giant myofilament titin, which serves as a spring. By modifying its phosphorylation state or by direct oxidative effects, titin determines cardiomyocyte-based passive stiffness. Probably the relative importance of cardiomyocyte-based changes is more important in the beginning of the disease, whereas ECM-based changes become more prominent in the more advanced stages. The present review focuses on these changes in ECM and cardiomyocytes in HFpEF and their potential prognostic and therapeutic implications.  相似文献   

4.
5.
Abamectin (ABA) as one of the worldwide used compounds in agriculture has raised safety concerns on nontarget organism toxicity. However, the study of male reproductive system damage caused by ABA remains unclear. Our aim is to investigate the effect of ABA‐induced cytotoxicity in TM3 Leydig cells and their underlying mechanisms. ABA inhibits TM3 cell viability and proliferation via cell cycle arrested in the G0/G1 phase. In addition, ABA‐induced mitochondrial depolarization leads to an imbalance in Bcl‐2 family expression, causing caspase‐dependent apoptosis in TM3 cells. The increased ratio of cells expression LC3 protein and LC3‐II to LC3‐I indicated the activation of autophagy potentially. Further experiments revealed ABA treatment reduced phosphatidylinositol 3‐kinase (PI3K), protein kinase B (AKT) phosphorylation, and mammalian target of rapamycin (mTOR) phosphorylation. Pretreatment with a PI3K/AKT inhibitor, LY294002, mimicked the ABA‐mediated effects on cytotoxicity. Pretreatment with a PI3K/AKT agonist, insulin‐like growth factor‐1, reversed the effects of ABA. ABA caused the accumulation of intracellular reactive oxygen species (ROS) by increased intensity of the ROS indicator. However, N‐acetylcysteine as ROS scavengers inhibited ABA‐induced apoptosis and autophagy and reversed these ABA‐mediated effects on PI3K/AKT/mTOR pathway. On the basis of the above results, it is suggested that ABA exposure induces apoptosis and autophagy in TM3 cells by ROS accumulation to mediate PI3K/AKT/mTOR signaling pathway suppression.  相似文献   

6.
These days, cancer can still not be effectively cured because cancer cells readily develop resistance to anticancer drugs. Therefore, an effective combination of drugs with different mechanisms to prevent drug resistance has become a very important issue. Furthermore, the BH3‐only protein BNIP3 is involved in both apoptotic and autophagic cell death. In this study, lung cancer cells were treated with a chemotherapy drug alone or in combination to identify the role of BNIP3 and autophagy in combination chemotherapy for treating cancer. Our data revealed that various combinational treatments of two drugs could increase cancer cell death and cisplatin in combination with rapamycin or LBH589, which triggered the cell cycle arrest at the S phase. Cells with autophagosome and pEGFP‐LC3 puncta increased when treated with drugs. To confirm the role of autophagy, cancer cells were pre‐treated with the autophagy inhibitor 3‐methyladenine (3‐MA). 3‐MA sensitized cancer cells to chemotherapy drug treatments. These results suggest that autophagy may be responsible for cell survival in combination chemotherapy for lung cancer. Moreover, BNIP3 was induced and localized in mitochondria when cells were treated with drugs. The transfection of a dominant negative transmembrane deletion construct of BNIP3 (BNIP3ΔTM) and treatment of a reactive oxygen species (ROS) inhibitor suppressed chemo drug‐induced cell death. These results indicate that BNIP3 and ROS may be involved in combination chemo drug‐induced cell death. However, chemo drug‐induced autophagy may protect cancer cells from drug cytotoxicity. As a result, inhibiting autophagy may improve the effects of combination chemotherapy when treating lung cancer.  相似文献   

7.
Autophagy refers to a lysosomal degradative pathway or a process of self-cannibalization. This pathway maintains nutrients levels for vital cellular functions during periods of starvation and it provides cells with survival advantages under various stress situations. However, the mechanisms responsible for the induction and regulation of autophagy are poorly understood. The c-Jun NH2-terminal kinase (JNK) signal transduction pathway functions to induce defence mechanisms that protect organisms against acute oxidative and xenobiotic insults. This pathway has also been repeatedly linked to the molecular events involved in autophagy regulation. The present review will focus on recent advances in understanding of the relationship between mitogen-activated protein kinase (MAPK)/JNK signalling and autophagic cell death.  相似文献   

8.
This study was aimed at exploring the underlying mechanisms of ketamine in the SV-40 immortalized human ureteral epithelial (SV-HUC-1) cells. The viability and apoptosis of SV-HUC-1 cells treated with 0.01, 0.1, and 1 mM ketamine were respectively detected via cell counting kit-8 (CCK-8) assay and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) staining. Reactive oxygen species (ROS) level was measured through ROS probe staining. Apoptosis-related proteins (B-cell lymphoma 2 [Bcl-2] and Bax) and autophagy-associated proteins (light chain 3-I [LC3-I] and LC3-II) were determined by western blot or immunofluorescent assay. Additionally, transmission electron microscopy (TEM) was used to evaluate the formation of autophagosomes. After cotreatment of 3-methyladenine (3-MA) or N-acetyl-l -cysteine (NAC), the biological functions of SV-HUC-1 cells were analyzed to determine the association of ROS with cell viability and autophagy. CCK-8 assay and TUNEL staining indicated that ketamine effectively decreased the viability of SV-HUC-1 cells and accelerated apoptosis of SV-HUC-1 cells through regulating the expression level of IKBα (phospho), nuclear factor кB (P65), Bcl-2, and Bax proteins. Enhanced ROS production was also confirmed in ketamine-treated SV-HUC-1 cells treated with ketamine. Ketamine-induced autophagosomes in SV-HUC-1 cells were observed by means of TEM, and increased levels of LC3 II/I ratio and Beclin 1 were examined through western blot and immunofluorescent assay. Furthermore, ketamine exerted effects on SV-HUC-1 cells in a dose-dependent and time-dependent manner. Additionally, cotreatment of NAC with 3-MA significantly attenuated the ROS level and suppressed the cell autophagy. Ketamine promoted SV-HUC-1 cell autophagy and impaired the cell viability of SV-HUC-1 cells by inducing ROS.  相似文献   

9.
10.
Oxidative stress plays a critical role in the progression of pathological cardiac hypertrophy and heart failure. Because crocetin represses oxidative stress in vitro and in vivo , we have suggested that crocetin would repress cardiac hypertrophy by targeting oxidative stress-dependent signalling. We tested this hypothesis using primary cultured cardiac myocytes and fibroblasts and one well-established animal model of cardiac hypertrophy. The results showed that crocetin (1–10 μM) dose-dependently blocked cardiac hypertrophy induced by angiogensin II (Ang II; 1 μM) in vitro . Our data further revealed that crocetin (50 mg/kg/day) both prevented and reversed cardiac hypertrophy induced by aortic banding (AB), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardio-graphic parameters and gene expression of hypertrophic markers. The inhibitory effect of crocetin on cardiac hypertrophy is mediated by blocking the reactive oxygen species (ROS)-dependent mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase-1/2 (MEK/ERK1/2) pathway and GATA binding protein 4 (GATA-4) activation. Further investigation demonstrated that crocetin inhibited inflammation by blocking nuclear factor kappa B (NF-κB) signalling and attenuated fibrosis and collagen synthesis by abrogating MEK-ERK1/2 signalling. Overall, our results indicate that crocetin, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis by suppression of ROS-dependent signalling pathways.  相似文献   

11.
Gemcitabine (GEM, 2′,2′-difluorodeoxycytidine) is currently used in advanced pancreatic adenocarcinoma, with a response rate of < 20%. The purpose of our work was to improve GEM activity by addition of cannabinoids. Here, we show that GEM induces both cannabinoid receptor-1 (CB1) and cannabinoid receptor-2 (CB2) receptors by an NF-κB-dependent mechanism and that its association with cannabinoids synergistically inhibits pancreatic adenocarcinoma cell growth and increases reactive oxygen species (ROS) induced by single treatments. The antiproliferative synergism is prevented by the radical scavenger N-acetyl--cysteine and by the specific NF-κB inhibitor BAY 11-7085, demonstrating that the induction of ROS by GEM/cannabinoids and of NF-κB by GEM is required for this effect. In addition, we report that neither apoptotic nor cytostatic mechanisms are responsible for the synergistic cell growth inhibition, which is strictly associated with the enhancement of endoplasmic reticulum stress and autophagic cell death. Noteworthy, the antiproliferative synergism is stronger in GEM-resistant pancreatic cancer cell lines compared with GEM-sensitive pancreatic cancer cell lines. The combined treatment strongly inhibits growth of human pancreatic tumor cells xenografted in nude mice without apparent toxic effects. These findings support a key role of the ROS-dependent activation of an autophagic program in the synergistic growth inhibition induced by GEM/cannabinoid combination in human pancreatic cancer cells.  相似文献   

12.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

13.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

14.
To explore the molecular mechanism of autologous blood transfusion promoting autophagy of hepatocellular carcinoma (HCC) cells and inhibiting the HCC progression through HIF-1α signalling pathway. This is a research paper. Rat hepatocellular carcinoma model and HepG2 cell model were built. The rats with HCC were conducted a surgery, and their blood was collected for detection to detect the recurrence and metastasis of the rats. Western blot was used to analysed the expression of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein. The apoptosis rate of HepG2 cells was detected by flow cytometry, and autophagosomes were observed by transmission electron microscopy. HIF-1α expression was measured by immunofluorescence assay. The expressions of HIF-1α, TP53, MDM2, ATG5 and ATG14 protein were highest in model + autoblood group compared with the model group. HIF-1α content of model group was higher, but content of TP53, MDM2, ATG5 and ATG14 in the model group is the second. The highest apoptosis rate was found in HepG2 + autoblood group. The number of autophagosomes in HepG2 + autoblood was obviously larger than that of HepG2 + autoblood + inhibitor. HIF-1α expression of immunofluorescence assay showed that high expression of HIF-1α was clearly observed in HepG2 and HepG2 + autoblood group from confocal observation. However, there was no HIF-1α protein expression in HepG2 + autoblood + inhibitor group. The migration rate in HepG2 group, HepG2 + autoblood group and HepG2 + autoblood + inhibitor group was 85.71 ± 7.38%, 14.36 ± 6.54% and 61.25 ± 5.39%, respectively. Autologous blood transfusion promotes autophagy of HCC cells through HIF-1α signalling pathway, which further inhibits HCC migration and erosion.  相似文献   

15.
BackgroundHeart failure with preserved ejection fraction (HFpEF) is a heterogeneous disease presenting a substantial challenge to clinicians. Currently, there is no safe and efficacious HFpEF treatment. In this study, we reported a standardized herbal medicinal product, QiShenYiQi (QSYQ), that can be used in the treatment of HFpEF.MethodsHFpEF mice were established by infusing a combination of Nω-nitro-L-arginine methyl ester (L-NAME) and feeding them a high-fat diet for 14 weeks. In the 10th week, the HFpEF mice were given dapagliflozin or QSYQ via oral gavage for four weeks. The blood pressure, echocardiography, hemodynamics, leukocyte infiltration, and oxidative stress in HFpEF mice were evaluated. Besides, inflammatory factors, endothelial adhesion factors, and endothelial-mesenchymal transformation (EndMT) markers were investigated.ResultsQSYQ significantly attenuated concentric cardiac remodeling while improving diastolic function and left ventricular compliance in HFpEF mice. QSYQ also inhibited inflammation and immunocyte recruitment during HFpEF. The infiltration of CD8+, CD4+ T cells, and CD11b/c+ monocytes was substantially mitigated in the myocardium of QSYQ-treated mice. TNF-α, MCP-1, NF-κB, and NLRP3 levels also reduced after QSYQ treatment. Furthermore, QSYQ significantly reversed the elevated expression of endothelial adhesion factors and EndMT occurrence. These effects of QSYQ were demonstrated by the activation of NO-cGMP-PKG pathway and reduction of eNOS uncoupling in the HFpEF heart.ConclusionThese results provide novel evidence that QSYQ treatment improves HFpEF by inhibiting microvascular endothelial inflammation and activating NO-cGMP-PKG pathway.  相似文献   

16.

Rationale

The demographics of patients with idiopathic pulmonary arterial hypertension (IPAH) are changing and this diagnosis is increasingly being made in older patients. However, diagnostic misclassifications are common as it may be difficult to differentiate between IPAH and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF). We investigated the hypothesis that the capillary pCO2 (pcCO2) may help distinguishing between idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF).

Methods

In a cross-sectional study, we retrospectively assessed pcCO2 levels (obtained from arterialized capillary blood at the time of diagnosis) from patients with IPAH or PH-HFpEF, respectively. Receiver operated characteristics (ROC) were used to determine the pcCO2 level providing the best discrimination between these two conditions. PcCO2 values were considered helpful if they were associated with a negative predictive value >0.9 to excluded either IPAH or PH-HFpEF.

Results

The study enrolled 185 patients, 99 with IPAH (74% female; age 47 ± 17 years; body mass index 26 ± 5 kg/m2, PAPm 53 ± 12 mmHg, PAWP 8 ± 3 mmHg), and 86 with PH-HFpEF (64% female; age 69 ± 10 years; body mass index 30 ± 6 kg/m2, PAPm 47 ± 10 mmHg, PAWP 21 ± 5 mmHg). PcCO2 at time of diagnosis was 33 ± 4 mmHg in the IPAH group and 40 ± 5 mmHg in the PH-HFpEF group (p < 0.001), respectively. According to ROC analysis, a pcCO2 of 36 mmHg was the best discriminator between both entities with an area under curve of 0.87 (p < 0.001). The likelihood of PH-HFpEF was <10% in patients with a PcCO2 < 34 mmHg, whereas the likelihood of IPAH was <10% in patients with a PcCO2 > 41 mmHg.

Conclusions

PcCO2 levels were significantly lower in IPAH compared to PH-HFpEF and may provide useful information in differentiating between both conditions.  相似文献   

17.
18.
Oxidative stress is a major pathogenesis of some ocular surface diseases. Our previous study demonstrated that epidermal growth factor (EGF)-activated reactive oxygen species (ROS) could protect against human corneal epithelial cell (HCE) injury. In the present study, we aimed to explore the role and mechanisms of oxidative stress and mitochondrial autophagy in HCE cells subjected to scratch injury. CCK-8 assays, EdU assays, Western blot analysis, wound-healing assays, and flow cytometry were conducted to determine cell viability, proliferation, protein expression, cell apoptosis, and intracellular ROS levels, respectively. The results showed that EGF could promote damage repair and inhibit cell apoptosis in scratch injured HCE cells by upregulating ROS (**p < .01, ***p < .001). EGF also induced mitochondrial autophagy and alleviated mitochondrial damage. Interestingly, the combination of the mitochondrial autophagy inhibitor and mitochondrial division inhibitor 1 (MDIVI-1) with EGF could reduce cell proliferation, viability, and the ROS level (*p < .05, **p < .01, ***p < .001). Treatment using the ROS inhibitor N-acetyl- l -cysteine abrogated the increase in mitochondrial membrane potential after EGF treatment. (*p < .05). Taken together, these findings indicated that EGF plays an important role in HCE damage repair and could activate ROS to protect against HCE injury by inducing mitochondrial autophagy via activation of TRPM2.  相似文献   

19.
20.
Crizotinib (CRIZO) has been widely employed to treat non‐small‐cell lung cancer. However, hepatic inflammatory injury is the major toxicity of CRIZO, which limits its clinical application, and the underlying mechanism of CRIZO‐induced hepatotoxicity has not been fully explored. Herein, we used cell counting kit‐8 assay and flow cytometry to detect CRIZO‐induced cytotoxicity on human hepatocytes (HL‐7702). CRIZO significantly reduced the survival rate of hepatocytes in a dose‐dependent manner. Furthermore, the reactive oxygen species (ROS) assay kit showed that CRIZO treatment strongly increased the level of ROS. In addition, CRIZO treatment caused the appearance of balloon‐like bubbles and autophagosomes in HL‐7702 cells. Subsequently, Western blotting, quantitative real‐time PCR and ELISA assays revealed that ROS‐mediated pyroptosis and autophagy contributed to CRIZO‐induced hepatic injury. Based on the role of ROS in CRIZO‐induced hepatotoxicity, magnesium isoglycyrrhizinate (MgIG) was used as an intervention drug. MgIG activated the Nrf2/HO‐1 signalling pathway and reduced ROS level. Additionally, MgIG suppressed hepatic inflammation by inhibiting NF‐κB activity, thereby reducing CRIZO‐induced hepatotoxicity. In conclusion, CRIZO promoted autophagy activation and pyroptosis via the accumulation of ROS in HL‐7702 cells. MgIG exerts therapeutic effects on CRIZO‐induced hepatotoxicity by decreasing the level of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号