共查询到20条相似文献,搜索用时 9 毫秒
1.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases. 相似文献
2.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc. 相似文献
3.
Myocilin is a 55-57-kDa protein that is a member of the olfactomedin protein family. It is expressed in the cornea, sclera and trabecular network of the eye, myelinated peripheral nerves, heart, skeletal muscle, trachea and other tissues. Myocilin binds to a domain of fibronectin, type IV collagen and laminen in the trabecular meshwork of the eye, and its expression is influenced by transforming growth factor beta. Because these extracellular matrix components also are common in the intervertebral disc, the objective of our study was to determine whether the matricellular protein myocilin could be detected in the human or sand rat intervertebral disc using immunohistochemistry and to assess its localization. We investigated 16 specimens of human disc tissue and discs from six sand rats. Three human disc cell cultures grown in three-dimensional culture also were evaluated. Immunocytochemical annulus analysis showed the presence of myocilin within the disc cell cytoplasm in some, but not all, cells. Extracellular matrix in both the human and sand rat disc was negative for myocilin localization. Myocilin is believed to play a role in cell-cell adhesion and/or signaling. Myocilin may have such functions within the disc cell population in a manner similar to tenascin, SPARC and thrombospondin, which are other matricellular proteins recently shown to be present in the disc. 相似文献
4.
Kai Chen Dajiang Wu Xiaodong Zhu Haijian Ni Xianzhao Wei Ningfang Mao Yang Xie Yunfei Niu Ming Li 《Genetics and molecular biology》2013,36(3):448-454
In this study, we used microarray analysis to investigate the biogenesis and progression of intervertebral disc degeneration. The gene expression profiles of 37 disc tissue samples obtained from patients with herniated discs and degenerative disc disease collected by the National Cancer Institute Cooperative Tissue Network were analyzed. Differentially expressed genes between more and less degenerated discs were identified by significant analysis of microarray. A total of 555 genes were significantly overexpressed in more degenerated discs with a false discovery rate of < 3%. Functional annotation showed that these genes were significantly associated with membrane-bound vesicles, calcium ion binding and extracellular matrix. Protein-protein interaction analysis showed that these genes, including previously reported genes such as fibronectin, COL2A1 and β-catenin, may play key roles in disc degeneration. Unsupervised clustering indicated that the widely used morphology-based Thompson grading system was only marginally associated with the molecular classification of intervertebral disc degeneration. These findings indicate that detailed, systematic gene analysis may be a useful way of studying the biology of intervertebral disc degeneration. 相似文献
5.
Intervertebral disc (IVD) degeneration is strongly associated with chronic low back pain, one of the most common causes of morbidity in the West. While normal healthy IVD is avascular, angiogenesis is a constant feature of IVD degeneration and has been shown to be associated with in-growth of nerves. Connective tissue growth factor (CTGF) plays a pivotal role in angiogenesis. To investigate the expression of CTGF in both normal and degenerated IVD, 21 IVDs were obtained from patients at surgery or postmortem examination and grouped according to the severity of histological degeneration. The immunohistochemical expression of CTGF was correlated with the degree of degeneration. CD31 immunohistochemistry was used to correlate IVD degeneration with vasculature. Our results showed that CTGF is expressed in non-degenerated and degenerated human IVDs and increased expression of CTGF is associated with degenerated discs, particularly within areas of neovascularization. We suggest that CTGF may play a role in angiogenesis in the human degenerated IVD. 相似文献
6.
椎间盘退变是腰痛发生的主要原因,严重影响了人们的生活和工作。尽管具体发病机制尚不明确,但近年来其相关动物模型的研究有了很大的进步。造模方法包括结构损伤、应力改变及基因敲除等,本文综述并讨论了这些方法的优缺点和应用方向,以期为后续的研究奠定理论基础。 相似文献
7.
Matrix metalloproteinases (MMPs) degrade components of the extracellular matrix of the disc, but the presence of MMP-19 has not been explored. In other tissues, MMP-19 is known to act in proteolysis of the insulin-like growth factor (IGF) binding protein-3, thereby exposing this protein to make it available to influence cell behavior. MMP-19 also has been shown to inhibit capillary-like formation and thus play a role in the avascular nature of the disc. Using immunohistochemistry, normal discs from six subjects aged newborn through 10 years and 20 disc specimens from control donors or surgical patients aged 15-76 (mean age 40.2 years) were examined for immunolocalization of MMP-19; six Thompson grade I discs, five Thompson grade II, eight Thompson grade III, five Thompson grade IV, and one Thompson grade V discs were analyzed. The results indicate that in discs from young subjects, MMP-19 was uniformly localized in the outer annulus. In discs from adult donors and surgical patients, outer and inner annulus cells only occasionally showed MMP-19 localization. The greatest expression of MMP-19 was observed in young discs, and little expression was seen in older or degenerating discs. Because MMP-19 has been shown to regulate IGF-mediated proliferation in other tissues, its decline in the aging/degenerating disc may contribute to the age-related decrease in disc cell numbers. 相似文献
8.
Zhiliang Li Zengwu Shao Songfeng Chen Donghua Huang Yizhong Peng Sheng Chen Kaige Ma 《Journal of cellular physiology》2020,235(2):1780-1794
To investigate whether TP53-induced glycolysis and apoptosis regulator (TIGAR) participates in compression-induced intervertebral disc (IVD) degeneration, and to determine the regulatory effect of TIGAR on nucleus pulposus (NP) cell autophagy and apoptosis following compression-induced injuries. IVD tissues were collected from human patients undergoing surgery (n = 20) and skeletally mature Sprague-Dawley rats (n = 15). Initially, the effect of compression on the expression of TIGAR was evaluated with in vivo and in vitro models. In addition, TIGAR was silenced to investigate the regulatory effect of TIGAR on compression-induced intracellular reactive oxygen species (ROS) levels, autophagy, and apoptosis in rat NP cells. Furthermore, the P53 inhibitor pifithrin-α (PFTα) and SP1 inhibitor mithramycin A were employed to detect expression level changes of TIGAR and autophagy-associated target molecules. TIGAR expression of NP cells increased gradually in human degenerative IVDs and in rat NP cells under compression both in vivo and in vitro. TIGAR knockdown enhanced compression-induced intracellular ROS generation and the NADPH/NADP+ and GSH/GSSG ratios. Moreover, TIGAR knockdown amplified the compression-induced caspase-3 activation and the apoptosis rate of rat NP cells. Likewise, knockdown of TIGAR significantly accelerated LC3B expression and autophagosome formation in rat NP cells during compression-induced injuries. The results also established that mithramycin A could inhibit TIGAR expression and autophagy levels in NP cells under compression conditions, while PFTα had no similar effect. Our data demonstrated that TIGAR acted as an important endogenous negative regulator of ROS levels, which might inhibit compression-induced apoptosis and autophagy through SP1-dependent mechanisms. 相似文献
9.
Cell type‐specific effects of Notch signaling activation on intervertebral discs: Implications for intervertebral disc degeneration 下载免费PDF全文
Yixin Zheng Cunchang Liu Li Ni Zhaoyang Liu Anthony J. Mirando Jun Lin Saijilafu Di Chen Matthew J. Hilton Bin Li Jianquan Chen 《Journal of cellular physiology》2018,233(7):5431-5440
10.
Jingjie Wang Xiaoyan Liu Bing Sun Wei Du Yanping Zheng Yuanliang Sun 《Journal of cellular biochemistry》2019,120(7):11900-11907
Intervertebral disc degeneration (IDD), a common global health issue, is a major cause for low back pain (LBP). Given the complex etiology of IDD, micro RNA (miRNA) recently has been demonstrated to play essential roles in the progression of IDD. Therefore, this study aims to investigate functions of the miR-154, which is well-documented in a series of cell activities, IDD, and other relevant mechanisms. Lumbar nucleus pulposus (NP) samples were collected from patients with IDD and the control group. After solexa sequencing and bioinformatical analysis, the results showed that miR-154 was increased in NP cells of patients with IDD. Inhibition of miR-154 increased type II collagen and aggrecan and decreased mRNA expressions of collagenase-3 (MMP13) and aggrecanase-1 (ADAMTS4), whereas overexpression of miR-154 reversed such effects in NP cells. In addition, the luciferase reporter assay revealed that fibroblast growth factor 14 (FGF14) is a direct target of miR-154 and that the overexpression of FGF14 leads to similar effects as inhibition of miR-154 did. In conclusion, the results suggested that miR-154 participates in the development of IDD and its effects are mediated via targeting FGF14. Thus, miR-154 may be thought as a potential etiological factor for IDD and may provide insights into a therapeutic target to treat IDD. 相似文献
11.
12.
Yu Chen Yanqing Wu Hongxue Shi Jianle Wang Zengming Zheng Jian Chen Xibang Chen Zengjie Zhang Daoliang Xu Xiangyang Wang Jian Xiao 《Journal of cellular and molecular medicine》2019,23(3):2136-2148
Intervertebral disc degeneration (IDD) is a complicated disease in patients. The pathogenesis of IDD encompasses cellular oxidative stress, mitochondrion dysfunction and apoptosis. Melatonin eliminates oxygen free radicals, regulates mitochondrial homoeostasis and function, stimulates mitophagy and protects against cellular apoptosis. Therefore, we hypothesize that melatonin has beneficial effect on IDD by mitophagy stimulation and inhibition of apoptosis. The effects of melatonin on IDD were investigated in vitro and in vivo. For the former, melatonin diminished cellular apoptosis caused by tert‐butyl hydroperoxide in nucleus pulposus (NP) cells. Mitophagy, as well as its upstream regulator Parkin, was activated by melatonin in both a dose and time‐dependent manner. Mitophagy inhibition by cyclosporine A (CsA) partially eliminated the protective effects of melatonin against NP cell apoptosis, suggesting that mitophagy is involved in the protective effect of melatonin on IDD. In addition, melatonin was demonstrated to preserve the extracellular matrix (ECM) content of Collagen II, Aggrecan and Sox‐9, while inhibiting the expression of matrix degeneration enzymes, including MMP‐13 and ADAMTS‐5. In vivo, our results demonstrated that melatonin treatment ameliorated IDD in a puncture‐induced rat model. To conclude, our results suggested that melatonin protected NP cells against apoptosis via mitophagy induction and ameliorated disc degeneration, providing the potential therapy for IDD. 相似文献
13.
Zheng Li Xin Chen Derong Xu Shugang Li Matthew T. V. Chan William K. K. Wu 《Cell proliferation》2019,52(6)
Intervertebral disc degeneration (IDD) is a common cause of low back pain, which inflicts more global disability than any other condition. Although IDD was deemed to be a natural process that comes with ageing, a growing body of evidence suggested that both genetic and environmental factors could modify the development of IDD. In this connection, aberrant function of nucleus pulposus cells has been implicated in IDD pathogenesis. Circular RNAs are a novel class of endogenous non‐coding RNAs that play crucial regulatory roles in diverse cellular processes. Recently, deregulation of circRNAs in nucleus pulposus cells was found to functionally participate in IDD development. In this review, we summarize the current knowledge regarding the deregulation of circRNAs in IDD in relation to their actions on nucleus pulposus cell functions, including cell proliferation, apoptosis and extracellular matrix synthesis/degradation. The potential clinical utilities of circRNAs as therapeutic targets for the management of IDD are also discussed. 相似文献
14.
Ping Shang Qian Tang Zhichao Hu Shiyuan Huang Yuezheng Hu Jianhong Zhu Haixiao Liu 《Journal of cellular and molecular medicine》2020,24(6):3701-3711
As a chronic musculoskeletal degeneration disease, intervertebral disc degeneration (IVDD) has been identified as a crucial cause for low back pain. This condition has a prevalence of 80% among adults without effective preventative therapy. Procyanidin B3 (Pro-B3) is a procyanidin dimer, which is widely present in the human diet and has multiple functions, such as preventing inflammation. But the inhibiting effect of Pro-B3 in IVDD development is still no known. Thus, our study aimed to demonstrate the therapeutical effect of Pro-B3 in IVDD and explain the underlying mechanism. In vitro studies, human nucleus pulposus (NP) cells were isolated and exposed in lipopolysaccharide (LPS) to simulate IVDD development. Pro-B3 pre-treatment inhibited LPS-induced production of inflammation correlated factors such as tumour necrosis factor α (TNF-α), interleukin-6 (IL-6), prostaglandin E2 (PGE2) and Nitric oxide (NO). On the other hand, LPS-medicated extracellular matrix (ECM) breakdown was blocked in Pro-B3 treated NP cells. Additionally, Pro-B3 treatment blocked the activation of NF-κB/toll-like receptor 4 pathway in LPS-exposed NP cells. Mechanistically, Pro-B3 could occupy MD-2's hydrophobic pocket exhibiting high affinity for LPS to intervene LPS/TLR4/MD-2 complex formation. In vivo, Pro-B3 treatment prevented the loss of gelatin NP cells and structural damage of annulus fibrosus in rat IVDD model. In brief, Pro-B3 is considered to be a treatment agent for IVDD. 相似文献
15.
16.
Zhonghui Chen Weibing Zhang Nu Zhang Yan Zhou Geliang Hu Mingdi Xue Junhua Liu Yaming Li 《Journal of cellular and molecular medicine》2019,23(9):6368-6377
It is obvious that epigenetic processes influence the evolution of intervertebral disc degeneration (IDD). However, its molecular mechanisms are poorly understood. Therefore, we tested the hypothesis that IGFBP5, a potential regulator of IDD, modulates IDD via the ERK signalling pathway. We showed that IGFBP5 mRNA was significantly down‐regulated in degenerative nucleus pulposus (NP) tissues. IGFBP5 was shown to significantly promote NP cell proliferation and inhibit apoptosis in vitro, which was confirmed by MTT, flow cytometry and colony formation assays. Furthermore, IGFBP5 was shown to exert its effects by inhibiting the ERK signalling pathway. The effects induced by IGFBP5 overexpression on NP cells were similar to those induced by treatment with an ERK pathway inhibitor (PD98059). Moreover, qRT‐PCR and Western blot analyses were performed to examine the levels of apoptosis‐related factors, including Bax, caspase‐3 and Bcl2. The silencing of IGFBP5 up‐regulated the levels of Bax and caspase‐3 and down‐regulated the level of Bcl2, thereby contributing to the development of human IDD. Furthermore, these results were confirmed in vivo using an IDD rat model, which showed that the induction of Igfbp5 mRNA expression abrogated the effects of IGFBP5 silencing on intervertebral discs. Overall, our findings elucidate the role of IGFBP5 in the pathogenesis of IDD and provide a potential novel therapeutic target for IDD. 相似文献
17.
Talwar Niroo Pilz Renate B. Yu Zhonghua Burlingame Al Boss Gerry R. 《Molecular and cellular biochemistry》1997,170(1-2):75-83
We have purified from human placenta a low molecular mass substance that inhibits cAMP-dependent protein kinase and activates protein kinase C. This protein kinase regulator was purified in three steps: (1) homogenizing placentas in chloroform/methanol and extracting the regulator into water; (2) eluting a strong anion exchange high performance liquid chromatography (HPLC) column with a quaternary gradient; and (3) eluting a reversed-phase HPLC column with a binary gradient. The regulator was found to be highly purified by HPLC, thin-layer chromatography (TLC) and laser desorption ionization mass spectrometry with a molecular mass of 703 Daltons by the latter procedure. The physical and biochemical properties of this protein kinase regulator suggest that it is a phospholipid but it did not co-elute by HPLC or by TLC with any of the known phospholipid activators of protein kinase C. 相似文献
18.
19.
Zhiwei Liao Xinghuo Wu Yu Song Rongjin Luo Huipeng Yin Shengfeng Zhan Shuai Li Kun Wang Yukun Zhang Cao Yang 《Journal of cellular and molecular medicine》2019,23(8):5737-5750
Intervertebral disc degeneration (IDD) is considered the primary culprit for low back pain. Although the underlying mechanisms remain unknown, hyperactive catabolism of the extracellular matrix (ECM) and inflammation are suggested to play critical roles in IDD progression. This study was designed to elucidate the role of angiopoietin‐like protein 8 (ANGPTL8) in the progression of IDD, especially the relationship of ANGPTL8 with ECM metabolism and inflammation. A positive association between ANGPTL8 expression and degenerative grades of IDD was detected in the analysis of human nucleus pulposus tissue samples. Silencing of ANGPTL8 attenuated the degradation of the anabolic protein type collagen II, and reduced the expression of the catabolic proteins MMP3 and MMP9, and the inflammatory cytokine IL‐6 through inhibition of NF‐κB signalling activation. In addition, the effect of ANGPTL8 was evaluated in a rat model of puncture‐induced IDD. Based on the imaging results and histological examination in animal study, knockdown of ANGPTL8 was demonstrated to ameliorate the IDD progression. These results demonstrate the detrimental role of ANGPTL8 expression in the pathogenesis of IDD and may provide a new therapeutic target for IDD treatment. 相似文献