首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms generally have many defenses against predation, yet may lack effective defenses if from populations without predators. Evolutionary theory predicts that “costly” antipredator behaviors will be selected against when predation risk diminishes. We examined antipredator behaviors in Aegean wall lizards, Podarcis erhardii, across an archipelago of land-bridge islands that vary in predator diversity and period of isolation. We examined two defenses, flight initiation distance and tail autotomy. Flight initiation distance generally decreased with declining predator diversity. All predator types had distinctive effects on flight initiation distance with mammals and birds having the largest estimated effects. Rates of autotomy observed in the field were highest on predator-free islands, yet laboratory-induced autotomy increased linearly with overall predator diversity. Against expectation from previous work, tail autotomy was not explained solely by the presence of vipers. Analyses of populations directly isolated from rich predator communities revealed that flight initiation distance decreased with increased duration of isolation in addition to the effects of current predator diversity, whereas tail autotomy could be explained simply by current predator diversity. Although selection against costly defenses should depend on time with reduced threats, different defenses may diminish along different trajectories even within the same predator–prey system.  相似文献   

2.
中国蝾螈科动物的反捕行为(正文)   总被引:1,自引:0,他引:1  
中国的蝾螈科(Family Salamandridae)动物演化出了卓越的,多种多样的特征,而这些特征往往伴随着强烈的皮肤毒腺存在来保护自己免受捕食者的侵害。这些反捕食行为机制分布列入表1,并以照片解释其反捕行为,来用于已创建的定义和术语是非常重要的。这些定义和术语与不同反捕行为是密切相关的。该科中大多数蝾螈都有鲜艳的腹部色型,有皮肤分泌物毒素存在以警告捕食者。有的蝾螈,象兰尾蝾螈Cynops cyanura和中国瘰螈Paramesotriton chinensis甚至向上翻转显示腹部颜色。  相似文献   

3.
The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.  相似文献   

4.
Aposematism involves predators learning conspicuous signals of defended prey. However, prey species utilize a wide range of chemical (or physical) defenses, which are not likely to be equally aversive to all predators. Aposematism may therefore only be effective against a physiologically sensitive subset of potential predators, and this can only be identified through behavioral testing. We studied the emerging model organism Tectocoris diophthalmus (Heteroptera: Scutelleridae), an aposematically colored but weakly defended shieldback stinkbug, to test the efficacy of its defenses against a suite of predator types. We predicted the bugs' defenses would be ineffectual against both experienced and naïve birds but aversive to predaceous insects. Surprisingly, the opposite pattern was found. Both habituated wild passerines and naïve chickens avoided the bugs, the chickens after only one or two encounters. To avian predators, T. diophthalmus is aposematic. However, praying mantids showed no repellency, aversion, or toxicity associated with adult or juvenile bugs after multiple trials. Comparison with prior studies on mantids using bugs with chemically similar but more concentrated defenses underscores the importance of dose in addition to chemical identity in the efficacy of chemical defenses. Our results also emphasize the importance of behavioral testing with multiple ecologically relevant predators to understand selective pressures shaping aposematic signals and chemical defenses.  相似文献   

5.
Predation is a strong selective force acting on both morphology and behaviour of prey animals. While morphological defences (e.g. crypsis, presence of armours or spines or specific body morphologies) and antipredator behaviours (e.g. change in foraging or reproductive effort, or hiding and fleeing behaviours) have been widely studied separately, few studies have considered the interplay between the two. The question raised in our study is whether antipredator behaviours of a prey fish to predator odours could be influenced by the morphology of prey conspecifics in the diet of the predator. We used goldfish (Carassius auratus) as our test species; goldfish exposed to predation risk significantly increase their body depth to length ratio, which gives them a survival advantage against gape‐limited predators. We exposed shallow‐bodied and deep‐bodied goldfish to the odour of pike (Esox lucius) fed either form of goldfish. Deep‐bodied goldfish displayed lower intensity antipredator responses than shallow‐bodied ones, consistent with the hypothesis that individuals with morphological defences should exhibit less behavioural modification than those lacking such defences. Moreover, both shallow‐ and deep‐bodied goldfish displayed their strongest antipredator responses when exposed to the odour of pike fed conspecifics of their own morphology, indicating that goldfish are able to differentiate the morphology of conspecifics through predator diet cues. For a given individual, predator threat increases as the prey become more like the individual eaten, revealing a surprising level of sophistication of chemosensory assessment by prey fish.  相似文献   

6.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

7.
Many species find themselves isolated from the predators with which they evolved. Isolation often leads to the loss of costly antipredator behavior, which may have adverse consequences if the population should later come into contact with predators. An understanding of both the mechanism (i.e. the degree to which antipredator behavior depends on experience), and of the time course of loss is important to be able to predict how a population will respond to future contact. We studied ‘group‐size effects’– the way in which animals change the time they allocate to antipredator vigilance as a function of group size – and visual and acoustic predator recognition in a population of tammar wallabies (Macropus eugenii), a cat‐sized (6–10 kg) macropodid marsupial. To study group size effects we observed wallabies foraging in four populations – three with some sort of predator and a New Zealand population that was isolated from all predators for about 130 yr. To study predator recognition, we observed the response of New Zealand wallabies to the presentation of a model or taxidermic mount of mammalian predators, and to the broadcast sounds of mammalian and avian predators. We compare these predator recognition experiments with results from a previous study of Kangaroo Island (South Australia) tammars. Complete isolation from all predators for as few as 130 yr led to the loss of group size effects and a rapid breakdown in visual predator recognition abilities. Our results are consistent with a key prediction of the multi‐predator hypothesis – namely, that the isolation from all predators may lead to a rapid loss of antipredator behavior.  相似文献   

8.
The expression of prey antipredator defenses is often related to ambient consumer pressure, and prey express greater defenses under intense consumer pressure. Predation is generally greater at lower latitudes, and antipredator defenses often display a biogeographic pattern. Predation pressure may also vary significantly between habitats within latitudes, making biogeographic patterns difficult to distinguish. Furthermore, invasive predators may also influence the expression of prey defenses in ecological time. The purpose of this study was to determine how these factors influence the strength of antipredator responses. To assess patterns in prey antipredator defenses based upon geographic range (north vs. south), habitat type (wave-protected vs. wave-exposed shores), and invasive predators, we examined how native rock (Cancer irroratus) and invasive green (Carcinus maenas) crab predators influence the behavioral and morphological defenses of dogwhelk (Nucella lapillus) prey from habitats that differ in wave exposure across an ~230 km range within the Gulf of Maine. The expression of behavioral and morphological antipredatory responses varied according to wave exposure, geographic location, and predator species. Dogwhelks from areas with an established history with green crabs exhibited the largest behavioral and morphological antipredator responses to green crabs. Dogwhelk behavioral responses to rock crabs did not vary between habitats or geographic regions, although morphological responses were greater further south where predation pressure was greatest. These findings suggest that dogwhelk responses to invasive and native predators vary according to geographic location and habitat, and are strongly affected by ambient predation pressure due to the invasion history of an exotic predator.  相似文献   

9.
Insects usually have cryptic colors to avoid detection by visually hunting predators. However, if the insects acquire toxic or repellent substances against predators, some of them develop conspicuous coloration to exhibit their unpalatability. Such warning colors allow insects to survive. In the nine-spotted diurnal moths (Erebidae: Arctiinae: Syntomini), we found the above-ground pupating species to have conspicuous colored pupae, but the ground-surface pupating species to have cryptic colored pupae. In this study, the relationships between unpalatability and coloration of these pupae are examined among three species of Amata and one species of Syntomoides. Pupae of the two species (A. germana and A. flava) are conspicuous in their color pattern with seven black dotted lines longitudinally on their pale-yellow bodies. These pupae are exposed to the aerial predators in a coarse silk mesh hanging from leaves and/or branches. The other two species (A. fortunei and S. imaon) pupate in spaces under stones, fallen twigs and leaves on the ground surface, and the pupae in a coarse silk cocoon is cryptic dark brown. Their pupation site selections are reproduced in the rearing glass vessels. Palatability assessment using lizards as a potential predator suggests that pupae of A. germana, A. flava and A. fortunei are unpalatable and the lizard's feeding response decreases with experience. However, pupae of S. imaon are all eaten (palatable). Finally, the possible evolutionary scenario of pupal colors of these four species is discussed in relation to pupation site selection and palatability.  相似文献   

10.
Isolation from predators can lead to the reduction or loss of ancestral behavioral defenses in prey, but does not always do so. Predators introduced to populations that have experienced relaxed selection from some ancestral predators can favor the evolution of antipredator behavior that has been lost. We examined these possibilities by eliciting antipredator behavior in three populations of threespine stickleback fish, Gasterosteus aculeatus : an oceanic population thought to resemble the ancestral form, and two populations historically (up to 20 000 yr) devoid of piscine predators (relaxed selection), one of which has been stocked with salmonids for nearly 25 yr (reversed selection). We used three kinds of predator models: a sculpin (ambush predator), a rainbow trout (chasing predator), and an overhead silhouette of an arctic tern. Stickleback reacted differently to the three models, indicating that they distinguished among them. Individuals from all populations responded similarly to the tern model. The ancestral population showed the weakest response to the sculpin model despite being the only population that encounters these predators naturally. Stickleback from the trout-free population displayed slightly reduced responses to the trout model, and recovery times like those in the ancestral population providing only weak evidence for loss of the ancestral antipredator repertoire. Fish from the reverse-selected population exhibited fascinating, elevated responses to both the trout and sculpin models relative to the other two populations. These findings offer initial evidence of (1) a partial alteration of the ancestral behavioral repertoire during a long period of relaxed selection from piscine predators, and (2) rapid acquisition of extreme responses to piscine predators under reverse selection.  相似文献   

11.
Summary Antipredator strategies employed by prey may be specific (effective against only one type of predator) or non-specific (effective against all predators). To examine the effects of the specificity of antipredator behaviour on biodiversity and community complexity, we analyse mathematical models including both evolutionary and population dynamics of a system including multiple prey species and multiple predator species. The models assume that all predator species change in their prey choice and all prey species have evolutionary change in their antipredator effort in evolution. The traits of each species change in an adaptive manner, whose rate is proportional to the slope of their fitness function. We calculate community complexity, resource-overlap between predators, an index of biodiversity and other properties of the coevolutionarily stable community for two cases: (1) all prey species have non-specific antipredator behaviour and (2) all prey species have predator-specific defence. Predator-specificity in defence increases community complexity, resource-overlap between predators, the total abundance of predators and the ratio of predator to prey abundance. Specific defence also decreases the number of isolated subwebs within the entire foodweb.  相似文献   

12.
Precisely how predators solve the problem of sampling unfamiliar prey types is central to our understanding of the evolution of a variety of antipredator defenses, ranging from Müllerian mimicry to polymorphism. When predators encounter a novel prey item then they must decide whether to take a risk and attack it, thereby gaining a potential meal and valuable information, or avoid such prey altogether. Moreover, if predators initially attack the unfamiliar prey, then at some point(s) they should decide to cease sampling if evidence mounts that the type is on average unprofitable to attack. Here, I cast this problem as a "two-armed bandit," the standard metaphor for exploration-exploitation trade-offs. I assume that as predators encounter and attack unfamiliar prey they use Bayesian inference to update both their beliefs as to the likelihood that individuals of this type are chemically defended, and the probability of seeing the prey type in the future. I concurrently use dynamic programming to identify the critical informational states at which predator should cease sampling. The model explains why predators sample more unprofitable prey before complete rejection when the prey type is common and explains why predators exhibit neophobia when the unfamiliar prey type is perceived to be rare.  相似文献   

13.
Prey species gain protection by imitating signals of unpalatable models in defensive mimicry. Mimics have been traditionally classified as Batesian (palatable mimic resembling an unpalatable model) or Müllerian (unpalatable mimic resembling a similarly unpalatable model). However, recent studies suggest that rather than discrete categories, the phenomenon of mimicry can be better understood as a continuum. The level of unpalatability of defended prey is a key factor in determining the type of mimetic relationship. Herein, we used insects (ladybugs and true bugs) from a putative European “red–black” mimetic complex as experimental models of defended species and crickets as a control prey. We offered the prey to two species of sympatric invertebrate predators (praying mantis and spider) and video recorded the interactions. We tested three alternative hypotheses, namely (i) the three red–black species tested are similarly defended against both predators; (ii) some red–black species are better defended than others against both predator species, and (iii) the effectiveness of the red–black species defenses is predator dependent. Both predators attacked all prey types with a similar frequency. But while all three red–black species similarly elicited aversive behaviors in spiders, the mantises' aversive reactions varied depending on the prey species. Our results provide support to the third hypothesis, suggesting that the same prey species can fall into different parts of the spectrum of palatability–unpalatability depending on the type of predator.  相似文献   

14.
Dropping is a common antipredator defence that enables rapid escape from a perceived threat. However, despite its immediate effectiveness in predator–prey encounters (and against other dangers such as a parasitoid or an aggressive conspecific), it remains an under‐appreciated defence strategy in the scientific literature. Dropping has been recorded in a wide range of taxa, from primates to lizards, but has been studied most commonly in insects. Insects have been found to utilise dropping in response to both biotic and abiotic stimuli, sometimes dependent on mechanical or chemical cues. Whatever the trigger for dropping, the decision to drop by prey will present a range of inter‐related costs and benefits to the individual and so there will be subtle complexities in the trade‐offs surrounding this defensive behaviour. In predatory encounters, dropping by prey will also impose varying costs and benefits on the predator – or predators – involved in the system. There may be important trade‐offs involved in the decision made by predators regarding whether to pursue prey or not, but the predator perspective on dropping has been less explored at present. Beyond its function as an escape tactic, dropping has also been suggested to be an important precursor to flight in insects and further study could greatly improve understanding of its evolutionary importance. Dropping in insects could also prove of significant practical importance if an improved understanding can be applied to integrated pest‐management strategies. Currently the non‐consumptive effects of predators on their prey are under‐appreciated in biological control and it may be that the dropping behaviour of many pest species could be exploited via management practices to improve crop protection. Overall, this review aims to provide a comprehensive synthesis of the current literature on dropping and to raise awareness of this fascinating and widespread behaviour. It also seeks to offer some novel hypotheses and highlight key avenues for future research.  相似文献   

15.
Potential prey are often exposed to multiple predators that vary in their foraging tactics and ability to detect prey. For animals that rely on crypsis to avoid predators, one solution is to alter their behaviour or appearance to maximize crypsis in ways that are specific to different types of predator. We tested whether dwarf chameleons ( Bradypodion transvaalense ) showed different behavioural responses, including colour change, towards multiple predators (bird and snake models) that detect and capture prey in different ways, and whether these antipredator responses varied geographically. Chameleons consistently used the same body postures (lateral compression and flipping to the opposite side of the branch) and displayed similar chromatic (colour) contrast against the natural background in response to both predator types. However, they became significantly more achromatically contrasting (brighter) in the presence of the snake compared to the bird. This relative difference in achromatic contrast towards the two types of predator was consistent among populations. There were also significant differences in both absolute achromatic and chromatic contrast among populations despite very similar light environment, background coloration and habitat structure. Our results highlight facultative crypsis as one type of flexible antipredator tactic and emphasize the importance of visual ecology in understanding prey–predator interactions.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 437–446.  相似文献   

16.
While some prey species possess an innate recognition of their predators, others require learning to recognize their predators. The specific characteristics of the predators that prey learn and whether prey can generalize this learning to similar predatory threats have been virtually ignored. Here, we investigated whether fathead minnows that learned to chemically recognize a specific predator species as a threat has the ability to generalize their recognition to closely related predators. We found that minnows trained to recognize the odour of a lake trout as a threat (the reference predator) generalized their responses to brook trout (same genus as lake trout) and rainbow trout (same family), but did not generalize to a distantly related predatory pike or non-predatory suckers. We also found that the intensity of antipredator responses to the other species was correlated with the phylogenetic distance to the reference predator; minnows responded with a higher intensity response to brook trout than rainbow trout. This is the first study showing that prey have the ability to exhibit generalization of predator odour recognition. We discuss these results and provide a theoretical framework for future studies of generalization of predator recognition.  相似文献   

17.
The invasion of alien species into areas beyond their native ranges is having profound effects on ecosystems around the world. In particular, novel alien predators are causing rapid extinctions or declines in many native prey species, and these impacts are generally attributed to ecological naïveté or the failure to recognise a novel enemy and respond appropriately due to a lack of experience. Despite a large body of research concerning the recognition of alien predation risk by native prey, the literature lacks an extensive review of naïveté theory that specifically asks how naïveté between novel pairings of alien predators and native prey disrupts our classical understanding of predator–prey ecological theory. Here we critically review both classic and current theory relating to predator–prey interactions between both predators and prey with shared evolutionary histories, and those that are ecologically ‘mismatched’ through the outcomes of biological invasions. The review is structured around the multiple levels of naïveté framework of Banks & Dickman (2007), and concepts and examples are discussed as they relate to each stage in the process from failure to recognise a novel predator (Level 1 naïveté), through to appropriate (Level 2) and effective (Level 3) antipredator responses. We discuss the relative contributions of recognition, cue types and the implied risk of cues used by novel alien and familiar native predators, to the probability that prey will recognise a novel predator. We then cover the antipredator response types available to prey and the factors that predict whether these responses will be appropriate or effective against novel alien and familiar native predators. In general, the level of naïveté of native prey can be predicted by the degree of novelty (in terms of appearance, behaviour or habitat use) of the alien predator compared to native predators with which prey are experienced. Appearance in this sense includes cue types, spatial distribution and implied risk of cues, whilst behaviour and habitat use include hunting modes and the habitat domain of the predator. Finally, we discuss whether the antipredator response can occur without recognition per se, for example in the case of morphological defences, and then consider a potential extension of the multiple levels of naïveté framework. The review concludes with recommendations for the design and execution of naïveté experiments incorporating the key concepts and issues covered here. This review aims to critique and combine classic ideas about predator–prey interactions with current naïveté theory, to further develop the multiple levels of naïveté framework, and to suggest the most fruitful avenues for future research.  相似文献   

18.
Despite the importance of predator recognition in mediating predator-prey interactions, we know little about the specific characteristics that prey use to distinguish predators from non-predators. Recent experiments indicate that some prey who do not innately recognize specific predators as threats have the ability to display antipredator responses upon their first encounter with those predators if they are similar to predators that the prey has recently learned to recognize. The purpose of our present experiment is to test whether this generalization of predator recognition is dependent on the level of risk associated with the known predator. We conditioned fathead minnows to chemically recognize brown trout either as a high or low threat and then tested the minnows for their responses to brown trout, rainbow trout (closely related predator) or yellow perch (distantly related predator). When the brown trout represents a high-risk predator, minnows show an antipredator response to the odour of brown trout and rainbow trout but not to yellow perch. However, when the brown trout represents a low-risk predator, minnows display antipredator responses to brown trout, but not to the rainbow trout or yellow perch. We discuss these results in the context of the Predator Recognition Continuum Hypothesis.  相似文献   

19.
Bright colorations in animals are sometimes an antipredatory signal meant to startle, warn, or deter a predator from consuming a prey organism. Freshwater turtle hatchlings of many species have bright ventral coloration with high internal contrast that may have an antipredator function. We used visual modeling and field experiments to test whether the plastron coloration of Chrysemys picta hatchlings deters predators. We found that bird predators can easily distinguish hatchling turtles from their backgrounds and can easily see color contrast within the plastron. Raccoons cannot easily discriminate within-plastron color contrast but can see hatchlings against common backgrounds. Despite this, we found that brightly-colored, high contrast, replica turtles were not attacked less than low contrast replica turtles, suggesting that the bright coloration is not likely to serve an antipredatory function in this context. We discuss the apparent lack of innate avoidance of orange coloration in freshwater turtles by predators and suggest that preference and avoidance of colors are context-dependent. Since the bright colors are likely not a signal, we hypothesize that the colors may be caused by pigments deposited in tissue from maternal reserves during development. In most species, these pigments fade ontogenetically but they may have important physiological functions in species that maintain the bright coloration throughout adulthood.  相似文献   

20.
Defenses protect prey, while offenses arm predators. Some defenses and offenses are constitutive (e.g. tortoise shells), while others are phenotypically plastic and not always expressed (e.g. neckteeth in water fleas). All of them are costly and only adaptive at certain prey densities. Here, I analyse such density-dependent effects, applying a functional response model to categorize defenses and offenses and qualitatively predict at which prey densities each category should evolve (if it is constitutive) or be expressed (if it is phenotypically plastic). The categories refer to the step of the predation cycle that a defense or offense affects: (1) search, (2) encounter, (3) detection, (4) attack, or (5) meal. For example, prey warning signals such as red coloration prevent predator attacks and are hence step 4 defenses, while sharp predator eyes enhance detection and are step 3 offenses. My theoretical analyses predict that step 1 defenses, which prevent predators from searching for their next meal (e.g. toxic substances), evolve or are expressed at intermediate prey densities. Other defenses, however, should be most beneficial at low prey densities. Regarding predators, step 1 offenses (e.g. immunity against prey toxins) are predicted to evolve or be expressed at high prey densities, other offenses at intermediate densities. I provide evidence from the literature that supports these predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号