首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entamoeba histolytica is the causative agent of human amoebiasis, a major cause of diarrhea and hepatic abscess in tropical countries. Infection is initiated by interaction of the pathogen with intestinal epithelial cells. This interaction leads to disruption of intercellular structures such as tight junctions (TJ). TJ ensure sealing of the epithelial layer to separate host tissue from gut lumen. Recent studies provide evidence that disruption of TJ by the parasitic protein EhCPADH112 is a prerequisite for E. histolytica invasion that is accompanied by epithelial barrier dysfunction. Thus, the analysis of molecular mechanisms involved in TJ disassembly during E. histolytica invasion is of paramount importance to improve our understanding of amoebiasis pathogenesis. This article presents an easy model that allows the assessment of initial host-pathogen interactions and the parasite invasion potential. Parameters to be analyzed include transepithelial electrical resistance, interaction of EhCPADH112 with epithelial surface receptors, changes in expression and localization of epithelial junctional markers and localization of parasite molecules within epithelial cells.  相似文献   

2.

Background

Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis.

Methodology/Principal Findings

We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma.

Conclusions

The pig model could help with simultaneously studying intestinal and extraintestinal lesion development.  相似文献   

3.
Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica.  相似文献   

4.
Entamoeba histolytica is a protozoan parasite of humans, and the causitive agent of intestinal amebiasis. The disease-causing stage of the parasite is an osmotically sensitive ameboid form, which differentiates into a thick-walled cyst for transmission from person to person. The conditions within the human intestine that induce encystment of the amoeba are unknown, but studies using an amoebic parasite of reptiles are now yielding information about the molecules and host:parasite interactions involved in the process. An understanding of the amoeba's obligatory encystment pathway should provide an approach for interrupting the transmission of this parasite, for which there is currently no vaccine.  相似文献   

5.
6.
The human large intestine can harbor two morphologically similar amoebae; the invasive Entamoeba histolytica and the non-invasive Entamoeba dispar. Whereas E. histolytica can produce intestinal and extra-intestinal lesions, E. dispar is present in non-symptomatic carriers. Although biochemical, genetic and proteomic studies have identified clear differences between these Entamoebae, it has become clear that several molecules, once assumed to be involved in tissue destruction, exist in both the virulent and the avirulent species. As surface molecules may play a role in invasion and could therefore determine which amoebae are invasive, we analyzed the glycoconjugate composition of E. histolytica and E. dispar using lectins. There was a significant difference between E. histolytica and E. dispar in the expression of glycoconjugates containing d-mannose and N-acetyl-α-d-galactosamine residues, but not between virulent and avirulent strains of E. histolytica. N-glycoconjugates with terminal α (1–3)-linked mannose residues participate in the adhesion and subsequent cytotoxicity of E. histolytica to cultured hamster hepatocytes. One of them probably is the Gal/GalNAc lectin.  相似文献   

7.
Phagocytosis plays a major role during the invasive process of the human intestine by the pathogenic amoeba E. histolytica. This parasite is the etiologic agent causing amoebic dysentery, a worldwide disease causing 50 million of clinical cases leading to about 100,000 deaths annually. The invasive process is characterized by a local acute inflammation and the destruction of the intestinal tissue at the invasion site. The recent sequencing of the E. histolytica genome has opened the way to large-scale approaches to study parasite virulence such as processes involved in human cell phagocytosis. In particular, two different studies have recently described the phagosome proteome, providing new insights into the process of phagocytosis by this pathogenic protozoan. It has been previously described that E. histolytica induces apoptosis and phagocytosis of the human target cells. Induction of apoptosis by the trophozoites is thought to be involved in the close regulation of the inflammatory response occurring during infection. Little is known about the molecular mechanisms responsible for induction of apoptosis or in the recognition of apoptotic cells by E. histolytica. In this review, we comment on the recent data we obtained after isolation of the early phagosomes and the identification of its associated proteins. We focus on the surface molecules potentially involved in human cell recognition. In particular, we propose several parasite molecules, potentially involved in the induction of apoptosis and/or the phagocytosis of human apoptotic cells.  相似文献   

8.
The amoeba parasite Entamoeba histolytica interacts with the microbiota within the intestine. Enterobacteria are the major source of energy for this parasite. Here, we highlight that the interplay between enterobacteria and E. histolytica is also important for parasite survival during inflammatory stresses and for the success of amoebic infection.  相似文献   

9.
10.
Molecules expressed by the pathogenic ameobaEntamoeba histolytica but weakly expressed or absent from the non-pathogenic ameobaEntamoeba dispar could be used by intestinal epithelial cells to discriminate between the two species and to initiate an appropriate inflammatory response. Among the possible molecules involved in this identification are the Gal/GalNac lectin and the lipophosphoglycan. Once the inflammatory response is initiated,E. histolytica trophozoites have to protect themselves against reactive nitrogen intermediates produced by intestinal epithelial cells, oxygen intermediates, and cytotoxic molecules released by activated neutrophils. By screening theE. histolytica genome, we have identified proteins that may play a role in the defence strategy of the parasite. One of these proteins, a serine proteinase inhibitor, inhibits human neutrophil cathepsin G, a key component of the host defence.  相似文献   

11.
ABSTRACT. Explaining the low incidence of invasive disease (10%) in humans infected with Entamoeba histolytica has occupied the attention of generations of both clinical and nonclinical investigators. One possible explanation would be the existence of two morphologically identical species—one an invasive pathogen, the other noninvasive. This was first proposed by Brumpt in 1925, but his explanation was virtually ignored until 1978 when the first of several publications appeared suggesting that E. histolytica did indeed consist of two species. We have reexamined Brumpt's claim in light of recent biochemical, immunological and genetic studies and conclude that the data derived from these investigations provide unequivocal evidence supporting his hypothesis. With this in mind, we redescribe the invasive parasite retaining the name Entamoeba histolytica Schaudinn, 1903 (Emended Walker, 1911), and set it apart from the noninvasive parasite described by Brumpt, Entamoeba dispar Brumpt, 1925.  相似文献   

12.
Host and parasite diversity are suspected to be key factors in Chagas disease pathogenesis. Experimental investigation of underlying mechanisms is hampered by a lack of tools to detect scarce, pleiotropic infection foci. We developed sensitive imaging models to track Trypanosoma cruzi infection dynamics and quantify tissue‐specific parasite loads, with minimal sampling bias. We used this technology to investigate cardiomyopathy caused by highly divergent parasite strains in BALB/c, C3H/HeN and C57BL/6 mice. The gastrointestinal tract was unexpectedly found to be the primary site of chronic infection in all models. Immunosuppression induced expansion of parasite loads in the gut and was followed by widespread dissemination. These data indicate that differential immune control of T. cruzi occurs between tissues and shows that the large intestine and stomach provide permissive niches for active infection. The end‐point frequency of heart‐specific infections ranged from 0% in TcVI‐CLBR‐infected C57BL/6 to 88% in TcI‐JR‐infected C3H/HeN mice. Nevertheless, infection led to fibrotic cardiac pathology in all models. Heart disease severity was associated with the model‐dependent frequency of dissemination outside the gut and inferred cumulative heart‐specific parasite loads. We propose a model of cardiac pathogenesis driven by periodic trafficking of parasites into the heart, occurring at a frequency determined by host and parasite genetics.  相似文献   

13.
Few organisms are more aptly named than Entamoeba histolytica, an intestinal protozoan parasite that can lyse and destroy human tissue. Within the past four years, new models of E. histolytica infection have begun to illuminate how amoebic trophozoites cause intestinal disease and liver abscess, and have expanded our understanding of the remarkable killing ability of this parasite. Here, I summarize recent work on the interactions between E. histolytica and human intestine, and between E. histolytica and hepatocytes, and discuss what these studies tell us about the role of inflammation and programmed cell death in the pathogenesis of amoebiasis.  相似文献   

14.
Entamoeba histolytica, a protozoan parasite, is the etiologic agent of amoebiasis in humans. It exists in two forms—the trophozoite which is the active, dividing form, and the cyst which is dormant and can survive for prolonged periods outside the host. In most infected individuals the trophozoites exist as commensals. In a small percentage of infections, the trophozoites become invasive and penetrate the intestinal mucosa, causing ulcers. The trophozoites may reach other parts of the body—mainly liver, where they cause tissue necrosis, leading to lifethreatening abscesses. It is thought that pathogenesis of infection byEntamoeba histolytica is governed at several levels, chief among them are (i) adherence of trophozoite to the target cell, (ii) lysis of target cell, and (iii) phagocytosis of target cell. Several molecules which may be involved in these processes have been identified. A lectin inhibitable by galactose and N-acetyl-D-galactosamine is present on the trophozoite surface. This is implicated in adherence of trophozoite to the target cell. Various amoebic poreforming proteins are known, of which 5kDa protein (amoebapore) has been extensively studied. These can insert into the lipid bilayers of target cells, forming ion-channels. The phagocytic potential of trophozoites is directly linked to virulence as measured in animal models. Factors like association of bacteria with trophozoites also influence virulence. Thus, pathogenesis is determined by multiple factors and a unifying picture taking into account the relative contributions of each factor is sought. Recent technical advances, which includes the development of a transfection system to introduce genes into trophozoites, should help to understand the mechanism of pathogenesis in amoebiasis.  相似文献   

15.
16.
Trypanosoma cruzi,the causative agent of Chagas disease, interacts with molecules in the midgut of its insect vector to multiply and reach the infective stage. Many studies suggest that the parasite binds to midgut-specific glycans. We identified several glycoproteins expressed in the intestine and perimicrovillar membrane (PMM) of Triatoma (Meccus) pallidipennis under different feeding conditions. In order to assess changes in protein-linked glycans, we performed lectin and immunoblot analyses on glycoprotein extracts from these intestinal tissues using well-characterized lectins, and an antibody, which collectively recognize a wide range of different glycans epitopes. We observed that the amount and composition of proteins and glycoproteins associated with different glycans structures changed over time in the intestines and PMM under different physiological conditions. PMM extracts contained a wide variety of glycoproteins with different sugar residues, including abundant high-mannose and complex sialylated glycans. We propose that these molecules could be involved in the process of parasite-vector interactions.  相似文献   

17.
Background Entamoeba (E.) histolytica is an obligate parasite of humans and non‐human primates. Methods This report describes the pathomorphological, immunohistological, and microbiological findings of fatal E. histolytica infection in two mantled guerezas (Colobus guereza) and one Hanuman langur (Semnopithecus entellus) from an epizootic outbreak of amebiasis in an open‐range recreation park. Results Pathomorphological examination revealed multifocal necrotizing and granulomatous hepatitis with intralesional protozoan trophozoites in all three cases. In addition, necrotizing and ulcerative gastritis was detected in both mantled guerezas. Furthermore, oligofocal acute pulmonary embolization was detected in one of these cases. No extra‐hepatic lesions were observed in the Hanuman langur. Immunohistological examination confirmed the etiologic diagnosis of E. histolytica‐induced lesions. Conclusions Although E. histolytica is a rarely diagnosed pathogen in Western European countries, veterinarians and animal keepers involved in handling and care taking of non‐human primates should be aware of the potential threat caused by this zoonotic parasite.  相似文献   

18.
Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC) and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV). We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1) pathogen 3D migration towards hepatocytes, 2) hepatocyte barrier crossing, 3) LSEC and subsequent hepatocyte crossing, and 4) quantification of human hepatic virus replication (HBV). Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The better understanding of these mechanisms in a human-relevant environment could aid the discovery of drugs against pathogenic liver infection.  相似文献   

19.
Entamoeba histolytica is a protozoan parasite that infects man and animals. This parasite has a global distribution and the disease it causes is usually characterized by diarrhea. In order to detect the parasite, it is necessary to differentiate it from Entamoeba dispar. E. dispar appears morphologically similar to E. histolytica but does not cause disease and tissue invasion. This study reports on the prevalence of E. histolytica and E. dispar among captive macaques in a primate facility in the Philippines. PCR was used to correctly identify both Entamoeba species. Indirect fluorescent antibody test (IFAT) was also performed to determine the seroprevalence of amebiasis in the captive macaques. Based on PCR targeting of the peroxiredoxin gene, of the 96 stool samples collected, 23 (24%) contained E. histolytica while 32 (33%) contained E. dispar. IFAT revealed 26 (27%) serum samples positive for antibodies against E. histolytica. Sequence analysis of the 18S rRNA gene showed that the 23 E. histolytica isolates were identical to human E. histolytica isolates deposited in the GenBank and not Entamoeba nuttalli as found in macaques in other recent reports. The Philippines is a major exporter of monkeys for biomedical research purposes, so screening animals before transporting them to other locations lessens the risk of spreading zoonoses to a wider area. This is the first report of the molecular detection of E. histolytica and E. dispar among macaques in the Philippines. This study complements the limited information available on the animal hosts of E. histolytica in the Philippines.  相似文献   

20.
Amebiasis is the disease caused by the enteric dwelling protozoan parasite Entamoeba histolytica. The WHO considers amebiasis as one of the major health problems in developing countries; it is surpassed by only malaria and schistosomiasis for death caused by parasitic infection. E. histolytica primarily lives in the colon as a harmless commensal, but is capable of causing devastating dysentery, colitis and liver abscess. What triggers the switch to a pathogenic phenotype and the onset of disease is unknown. We are becoming increasingly aware of the complexity of the host-parasite interaction. During chronic stages of amebiasis, the host develops an immune response that is incapable of eliminating tissue resident parasites, while the parasite actively immunosuppresses the host. However, most individuals with symptomatic infections succumb only to an episode of dysentery. Why most halt invasion and a minority progress to chronic disease remains poorly understood. This review presents a current understanding of the immune processes that shape the outcome of E. histolytica infections during its different stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号