首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The plant‐specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS‐type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C‐to‐U type of RNA editing events in plant organelles. Here, we report a DYW‐protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the ‘missing’ 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.  相似文献   

4.
5.
6.
The mitochondrial and chloroplast mRNAs of the majority of land plants are modified through cytidine to uridine (C‐to‐U) RNA editing. Previously, forward and reverse genetic screens demonstrated a requirement for pentatricopeptide repeat (PPR) proteins for RNA editing. Moreover, chloroplast editing factors OZ1, RIP2, RIP9 and ORRM1 were identified in co‐immunoprecipitation (co‐IP) experiments, albeit the minimal complex sufficient for editing activity was never deduced. The current study focuses on isolated, intact complexes that are capable of editing distinct sites. Peak editing activity for four sites was discovered in size‐exclusion chromatography (SEC) fractions ≥ 670 kDa, while fractions estimated to be approximately 413 kDa exhibited the greatest ability to convert a substrate containing the editing site rps14 C80. RNA content peaked in the ≥ 670 kDa fraction. Treatment of active chloroplast extracts with RNase A abolished the relationship of editing activity with high‐MW fractions, suggesting a structural RNA component in native complexes. By immunoblotting, RIP9, OTP86, OZ1 and ORRM1 were shown to be present in active gel filtration fractions, though OZ1 and ORRM1 were mainly found in low‐MW inactive fractions. Active editing factor complexes were affinity‐purified using anti‐RIP9 antibodies, and orthologs to putative Arabidopsis thaliana RNA editing factor PPR proteins, RIP2, RIP9, RIP1, OZ1, ORRM1 and ISE2 were identified via mass spectrometry. Western blots from co‐IP studies revealed the mutual association of OTP86 and OZ1 with native RIP9 complexes. Thus, RIP9 complexes were discovered to be highly associated with C‐to‐U RNA editing activity and other editing factors indicative of their critical role in vascular plant editosomes.  相似文献   

7.
8.
Meiotic development (sporulation) in the yeast Saccharomyces cerevisiae is induced by nutritional deprivation. Smk1 is a meiosis-specific MAP kinase homolog that controls spore morphogenesis after the meiotic divisions have taken place. In this study, recessive mutants that suppress the sporulation defect of a smk1-2 temperature-sensitive hypomorph were isolated. The suppressors are partial function alleles of CDC25 and CYR1, which encode the Ras GDP/GTP exchange factor and adenyl cyclase, respectively, and MDS3, which encodes a kelch-domain protein previously implicated in Ras/cAMP signaling. Deletion of PMD1, which encodes a Mds3 paralog, also suppressed the smk1-2 phenotype, and a mds3-Δ pmd1-Δ double mutant was a more potent suppressor than either single mutant. The mds3-Δ, pmd1-Δ, and mds3-Δ pmd1-Δ mutants also exhibited mitotic Ras/cAMP phenotypes in the same rank order. The effect of Ras/cAMP pathway mutations on the smk1-2 phenotype required the presence of low levels of glucose. Ime2 is a meiosis-specific CDK-like kinase that is inhibited by low levels of glucose via its carboxy-terminal regulatory domain. IME2-ΔC241, which removes the carboxy-terminal domain of Ime2, exacerbated the smk1-2 spore formation phenotype and prevented cyr1 mutations from suppressing smk1-2. Inhibition of Ime2 in meiotic cells shortly after Smk1 is expressed revealed that Ime2 promotes phosphorylation of Smk1's activation loop. These findings demonstrate that nutrients can negatively regulate Smk1 through the Ras/cAMP pathway and that Ime2 is a key activator of Smk1 signaling.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.  相似文献   

18.
Wagner M  Briza P  Pierce M  Winter E 《Genetics》1999,151(4):1327-1340
The SMK1 mitogen-activated protein kinase is required for spore morphogenesis in Saccharomyces cerevisiae. In contrast to the multiple aberrant spore wall assembly patterns seen even within a single smk1 null ascus, different smk1 missense mutants block in a coordinated fashion at intermediate stages. One smk1 mutant forms asci in which the four spores are surrounded only by prospore wall-like structures, while another smk1 mutant forms asci in which the spores are surrounded by inner but not outer spore wall layers. Stepwise increases in gene dosage of a hypomorphic smk1 allele allow for the completion of progressively later morphological and biochemical events and for the acquisition of distinct spore-resistance phenotypes. Furthermore, smk1 allelic spore phenotypes can be recapitulated by reducing wild-type SMK1 expression. The data demonstrate that SMK1 is required for the execution of multiple steps in spore morphogenesis that require increasing thresholds of SMK1 activity. These results suggest that quantitative changes in mitogen-activated protein kinase signaling play a role in coordinating multiple events of a single cellular differentiation program.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号