首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Methane (CH4) is the most important greenhouse gas next to CO2 and as such it contributes to the enhanced greenhouse effect. Peat soils are often considered as sources of CH4. Grasslands on the other hand are generally considered to be a net sink for atmospheric CH4. The aim of this study was twofold: (i) to quantify the net CH4 emission of intensively managed grasslands on peat soil in the Netherlands; and (ii) to assess the effects of grassland management, i.e. drainage, nitrogen (N) fertilization, and grazing versus mowing, on CH4 emission rates. Net CH4 emissions were measured weekly or biweekly for one year with vented closed flux chambers at two sites, one with a mean ground water level of 22 cm below surface and one with a mean ground water level of 42 cm. On each site there were three treatments: mowing without N application, mowing with N application, and grazing with N application. The dominating species was perennial ryegrass (Lolium perenne L.). Net CH4 emissions were low, in general in the range of -0.2 to 0.2 mg CH4 m-2 d-1. In the relatively warm summer of 1994, consumption of atmospheric CH4 peaked at 0.4 mg m-2 d-1. On an annual basis, the sites were net consumers of atmospheric CH4. However, the consumption was small: 0.31 to 0.08 kg CH4 ha-1 yr-1. Effect of mean ground water level was significant, but small. There were no significant effects of withholding N fertilization for some years and grazing versus mowing on net CH4 emissions. We conclude that grassland management of intensively managed grasslands on peat soil is not a suitable tool for reducing net CH4 emissions.  相似文献   

2.
3.
4.
This paper reports the range and statistical distribution of oxidation rates of atmospheric CH4 in soils found in Northern Europe in an international study, and compares them with published data for various other ecosystems. It reassesses the size, and the uncertainty in, the global terrestrial CH4 sink, and examines the effect of land‐use change and other factors on the oxidation rate. Only soils with a very high water table were sources of CH4; all others were sinks. Oxidation rates varied from 1 to nearly 200 μg CH4 m?2 h?1; annual rates for sites measured for ≥1 y were 0.1–9.1 kg CH4 ha?1 y?1, with a log‐normal distribution (log‐mean ≈ 1.6 kg CH4 ha?1 y?1). Conversion of natural soils to agriculture reduced oxidation rates by two‐thirds –‐ closely similar to results reported for other regions. N inputs also decreased oxidation rates. Full recovery of rates after these disturbances takes > 100 y. Soil bulk density, water content and gas diffusivity had major impacts on oxidation rates. Trends were similar to those derived from other published work. Increasing acidity reduced oxidation, partially but not wholly explained by poor diffusion through litter layers which did not themselves contribute to the oxidation. The effect of temperature was small, attributed to substrate limitation and low atmospheric concentration. Analysis of all available data for CH4 oxidation rates in situ showed similar log‐normal distributions to those obtained for our results, with generally little difference between different natural ecosystems, or between short‐and longer‐term studies. The overall global terrestrial sink was estimated at 29 Tg CH4 y?1, close to the current IPCC assessment, but with a much wider uncertainty range (7 to > 100 Tg CH4 y?1). Little or no information is available for many major ecosystems; these should receive high priority in future research.  相似文献   

5.
Human activities have greatly increased the availability of biologically active forms of nutrients [e.g., nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg)] in many soil ecosystems worldwide. Multi‐nutrient fertilization strongly increases plant productivity but may also alter the storage of carbon (C) in soil, which represents the largest terrestrial pool of organic C. Despite this issue is important from a global change perspective, key questions remain on how the single addition of N or the combination of N with other nutrients might affect C sequestration in human‐managed soils. Here, we use a 19‐year old nutrient addition experiment on a permanent grassland to test for nutrient‐induced effects on soil C sequestration. We show that combined NPKMg additions to permanent grassland have ‘constrained’ soil C sequestration to levels similar to unfertilized plots whereas the single addition of N significantly enhanced soil C stocks (N‐only fertilized soils store, on average, 11 t C ha?1 more than unfertilized soils). These results were consistent across grazing and liming treatments suggesting that whilst multi‐nutrient additions increase plant productivity, soil C sequestration is increased by N‐only additions. The positive N‐only effect on soil C content was not related to changes in plant species diversity or to the functional composition of the plant community. N‐only fertilized grasslands show, however, increases in total root mass and the accumulation of organic matter detritus in topsoils. Finally, soils receiving any N addition (N only or N in combination with other nutrients) were associated with high N losses. Overall, our results demonstrate that nutrient fertilization remains an important global change driver of ecosystem functioning, which can strongly affect the long‐term sustainability of grassland soil ecosystems (e.g., soils ability to deliver multiple ecosystem services).  相似文献   

6.
A total of 156 plant species from 35 botanical families collected from diversified grasslands in the French Massif Central were screened in vitro for their potential to combine high nutritive value for ruminants and a reduced impact on the environment. The vegetative part of plants were analyzed for their chemical composition and incubated in a batch system containing buffered rumen fluid at 39°C for 24 h. The gas production and composition were recorded, and the fermentation end-product concentrations in the incubation medium and the in vitro true organic matter digestibility (IVTOMD) were determined. The results were expressed relative to perennial ryegrass (PRG) values used as a reference. We observed that no relationship between methane (CH4) and volatile fatty acids (VFA) was evidenced for 12 plants, the fermentation of these plants producing significantly less CH4 for a similar level of VFA production. In all, 13 plants showed 50% less CH4 production per unit of organic matter truly digested (OMTD) than PRG. Among these plants, two reduced CH4 by more than 80% and four species had an IVTOMD higher than 80%. The underlying modes of action seem to be different among plants: some result in an accumulation of H2 in the fermentation gas, but others do not. In terms of nitrogen (N) use efficiency, the fermentation of 37 plants halved the ratio between ammonia (N–NH3) and plant N content compared with PRG, of which six showed a complete absence of N–NH3 in the medium. Among these plants, four maintained the IVTDMO at values not significantly different from PRG (P>0.05). Considering the multi-criteria selection, 16 plants showed simultaneously a reduction of more than 80% in N–NH3 production and 30% in CH4 emission per unit of OMTD compared with PRG, including three with an IVTOMD higher than 80%. Overall, the botanical families that reduced simultaneously CH4 and N–NH3 most efficiently were the Rosaceae, Onagraceae, Polygonaceae and Dipsacaceae. The Onagraceae also gave high values for IVTOMD.  相似文献   

7.

Question

How does the plant species composition of Pontic–Pannonian salt‐rich habitats vary on a large geographical scale? Do the floristic differences between Pannonia and the Balkans correspond to the current phytosociological classification?

Location

Pannonia (Hungary, Slovakia, Austria, Czech Republic, Croatia, Serbia, Romania) and the Balkans (Bulgaria, Macedonia, Greece).

Methods

Two thousand four hundred and thirty‐seven relevés from halophytic and sub‐halophytic habitats were classified using a modified TWINSPAN. The crispness of classification was checked. DCA and CCA with climate data as explanatory variables were applied.

Results

The classification was best interpreted at the level of 15 clusters. The vegetation changed along the salinity gradient from sub‐halophytic grasslands (including Trifolion resupinati alliance of the Molinio‐Arrhenatheretalia class and Beckmannion eruciformis and Festucion pseudovinae p. p. alliances of the Festuco‐Puccinellietea class) and reed beds (Bolboschoenion maritimi p. p. alliance; the Phragmito‐Magnocaricetea class), through steppe and wet inland halophytic vegetation (Festucion pseudovinae p. p., Puccinellion limosae, Pucinellion convolutae, Bolboschoenion maritimi p. p. and Juncion gerardii of the Festuco‐Puccinellietea class) towards the extreme halophytic vegetation of the Thero‐Salicornietea, Crypsietea and Juncetea maritimi classes. This gradient was longer in the Balkan region, where it spanned from the sub‐mediterranean salt‐rich grasslands to the extremely halophytic vegetation at the Black Sea coast. The second most important gradient coincided with the water regime. Some vegetation types appeared to be confined to either the Pannonian or the Balkan region (especially within dry sub‐halophytic and steppe halophytic grasslands), while others were distributed across the entire study area. The above‐mentioned pattern did not always correspond with current classification systems.

Conclusions

Variation in salt‐rich vegetation predominantly follows the salinity and water regime gradients. Geographical variation, generally coinciding with climatic and historical effects, is also important, especially in drier salt‐rich habitats. Our large‐scale analysis of the floristic variation of salt‐rich habitats might be useful for the unification of classification systems that differ substantially between the countries involved. In addition, the analysis may be useful for adjustment of a classification system in the poorly explored Balkan region, where particular vegetation types were identified with, or delimited from, Central European vegetation types without detailed comparative analysis until now.
  相似文献   

8.
Upland soils are important sinks for atmospheric methane (CH4), a process essentially driven by methanotrophic bacteria. Soil CH4 uptake often depends on land use, with afforestation generally increasing the soil CH4 sink. However, the mechanisms driving these changes are not well understood to date. We measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subalpine pasture. Our experimental design included forest stands with ages ranging from 25 to >120 years and included a factorial cattle urine addition treatment to test for the sensitivity of soil CH4 uptake to N application. Mean CH4 uptake significantly increased with stand age on all sampling dates. In contrast, CH4 oxidation by sieved soils incubated in the laboratory did not show a similar age dependency. Soil CH4 uptake was unrelated to soil N status (but cattle urine additions stimulated N2O emission). Our data indicated that soil CH4 uptake in older forest stands was driven by reduced soil water content, which resulted in a facilitated diffusion of atmospheric CH4 into soils. The lower soil moisture likely resulted from increased interception and/or evapotranspiration in the older forest stands. This mechanism contrasts alternative explanations focusing on nitrogen dynamics or the composition of methanotrophic communities, although these factors also might be at play. Our findings further imply that the current dramatic increase in forested area increases CH4 uptake in alpine regions.  相似文献   

9.
Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site‐level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous‐dominated systems.  相似文献   

10.
11.
Understanding how mutualisms evolve in response to a changing environment will be critical for predicting the long‐term impacts of global changes, such as increased N (nitrogen) deposition. Bacterial mutualists in particular might evolve quickly, thanks to short generation times and the potential for independent evolution of plasmids through recombination and/or HGT (horizontal gene transfer). In a previous work using the legume/rhizobia mutualism, we demonstrated that long‐term nitrogen fertilization caused the evolution of less‐mutualistic rhizobia. Here, we use our 63 previously isolated rhizobium strains in comparative phylogenetic and quantitative genetic analyses to determine the degree to which variation in partner quality is attributable to phylogenetic relationships among strains versus recent genetic changes in response to N fertilization. We find evidence of distinct evolutionary relationships between chromosomal and pSym genes, and broad similarity between pSym genes. We also find that nifD has a unique evolutionary history that explains much of the variation in partner quality, and suggest MoFe subunit interaction sites in the evolution of less‐mutualistic rhizobia. These results provide insight into the mechanisms behind the evolutionary response of rhizobia to long‐term N fertilization, and we discuss the implications of our results for the evolution of the mutualism.  相似文献   

12.
13.
Slow anion channels (SLAC/SLAH) are efflux channels previously shown to be critical for stomatal regulation. However, detailed analysis using the β‐glucuronidase reporter gene showed that members of the SLAC/SLAH gene family are predominantly expressed in roots, in addition to stomatal guard cells, implicating distinct function(s) of SLAC/SLAH in the roots. Comprehensive mutant analyses of all slac/slah mutants indicated that slah3 plants showed a greater growth defect than wild‐type plants when ammonium was supplied as the sole nitrogen source. Ammonium toxicity was mimicked by acidic pH in nitrogen‐free external medium, suggesting that medium acidification by ammonium‐fed plants may underlie ammonium toxicity. Interestingly, such toxicity was more severe in slah3 mutants and, particularly in wild‐type plants, was alleviated by supplementing the media with micromolar levels of nitrate. These data thus provide evidence that SLAH3, a nitrate efflux channel, plays a role in nitrate‐dependent alleviation of ammonium toxicity in plants.  相似文献   

14.
Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen‐doped carbon dots (N‐CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N‐CDs with superior fluorescence performances. The as‐prepared N‐CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength‐dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N‐CDs were investigated using the rat glomerular mesangial cells. The results showed the N‐CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as‐obtained N‐CDs could have potential applications in biosensors, cellular imaging, and other fields.  相似文献   

15.
Meeting the projected 50% increase in global grain demand by 2030 without further environmental degradation poses a major challenge for agricultural production. Because surface ozone (O3) has a significant negative impact on crop yields, one way to increase future production is to reduce O3‐induced agricultural losses. We present two strategies whereby O3 damage to crops may be reduced. We first examine the potential benefits of an O3 mitigation strategy motivated by climate change goals: gradual emission reductions of methane (CH4), an important greenhouse gas and tropospheric O3 precursor that has not yet been targeted for O3 pollution abatement. Our second strategy focuses on adapting crops to O3 exposure by selecting cultivars with demonstrated O3 resistance. We find that the CH4 reductions considered would increase global production of soybean, maize, and wheat by 23–102 Mt in 2030 – the equivalent of a ~2–8% increase in year 2000 production worth $3.5–15 billion worldwide (USD2000), increasing the cost effectiveness of this CH4 mitigation policy. Choosing crop varieties with O3 resistance (relative to median‐sensitivity cultivars) could improve global agricultural production in 2030 by over 140 Mt, the equivalent of a 12% increase in 2000 production worth ~$22 billion. Benefits are dominated by improvements for wheat in South Asia, where O3‐induced crop losses would otherwise be severe. Combining the two strategies generates benefits that are less than fully additive, given the nature of O3 effects on crops. Our results demonstrate the significant potential to sustainably improve global agricultural production by decreasing O3‐induced reductions in crop yields.  相似文献   

16.
To elucidate the impact of high nitrogen (N) deposition on intact bog vegetation, as affected by phosphorus (P) availability, we conducted a 4-year fertilization experiment with N and P at six sites, one with moderate N deposition and five with high N deposition. During the growing season, N (40 kg ha–1 ya–1), P (3 kg ha–1 y–1), or a combination of both elements was applied to the vegetation. The fertilization effects turned out to be additive in nature. Adding P decreased the inorganic N concentration and increased the P concentration in the rhizosphere at two sites. Furthermore, P stimulated Sphagnum growth and Sphagnum net primary productivity (NPP) at two sites; it also seemed to encourage growth at two other sites including the moderate-deposition site. Vascular plant growth remained largely unaffected but was depressed at one high-deposition site. Adding N increased the concentration of inorganic N in the rhizosphere at the moderate-deposition site and at two of the three high-deposition sites; vascular plant growth and litter production were encouraged at three high-deposition sites. The addition of N depressed Sphagnum height increment at four high deposition sites and reduced Sphagnum NPP at two sites. Shading by vascular plants was of minor importance in explaining the negative effects of N on Sphagnum. We conclude that because P alleviates the negative impact N has on Sphagnum by enhancing its capability to assimilate the deposited N, P availability is a major factor determining the impact of N deposition on Sphagnum production and thus on carbon sequestration in bogs.  相似文献   

17.
Explosives used in mining, such as ammonium nitrate fuel oil (ANFO), can cause eutrophication of the surrounding environment by leakage of ammonium and nitrate from undetonated material that is not properly treated. Cold temperatures in mines affect nitrogen removal from water when such nutrients are treated with bioreactors in situ. In this study we identified bacteria in the bioreactors and studied the effect of temperature on the bacterial community. The bioreactors consisted of sequential nitrification and denitrification units running at either 5 or 10°C. One nitrification bioreactor running at 5°C was fed with salt spiked water. From the nitrification bioreactors, sequences from both ammonia‐ and nitrite‐oxidizing bacteria were identified, but the species were distinct at different temperatures. The main nitrifiers in the lower temperature were closely related to the genera Nitrosospira and Candidatus Nitrotoga. 16S rRNA gene sequences closely related to halotolerant Nitrosomonas eutropha were found only from the salt spiked nitrification bioreactor. At 10°C the genera Nitrosomonas and Nitrospira were the abundant nitrifiers. The results showed that bacterial species richness estimates were low, <150 operational taxonomic units (OTUs), in all bioreactor clone libraries, when sequences were assigned to operational taxonomic units at an evolutionary distance of 0.03. The only exception was the nitrification bioreactor running at 10°C where species richness was higher, >300 OTUs. Species richness was lower in bioreactors running at 5°C compared to those operating at 10°C. Biotechnol. Bioeng. 2011;108: 2876–2883. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
19.
Here, we have presented a green and facile strategy to fabricate nitrogen‐doped carbon dots (N‐CDs) and their applications for determination of chlortetracycline (CTC) and sulfasalazine (SSZ). The fluorescent N‐CDs, prepared by one‐step hydrothermal reaction of citric acid and l ‐arginine, manifested numerous excellent features containing strong blue fluorescence, good water‐solubility, narrow size distribution, and a high fluorescence quantum yield (QY) of 38.8%. Based on the fluorescence quenching effects, the as‐synthesized N‐CDs as a fluorescent nanosensor exhibited superior analytical performances for quantifying CTC and SSZ. The linear range for CTC was calculated to be from 0.85 to 20.38 μg ml?1 with a low detection limit of 0.078 μg ml?1. Meanwhile, the linear range for SSZ was estimated to be from 0.34 to 6.76 μg ml?1 with a low detection limit of 0.032 μg ml?1. Therefore, the N‐CDs hold admirable application potential for constructing a fluorescent sensor for pharmaceutical analysis.  相似文献   

20.
Seawater was supplemented with NH4+ and P to determine concentrations of N and P adequate for supporting exponential growth of bacteria utilizing crude oil, and to determine maximum rates of N and P uptake. Oil-degrading microorganisms were obtained by enrichment culture of indigenous oil-utilizing microorganisms in seawater. NH4+ at a concentration of 5.5 µM was limiting to growth of bacteria on crude oil. Exponential growth occurred at concentrations higher than 30 µM NH4+. The P concentration of 0.13 µM was limiting to growth of bacteria on crude oil. Exponential growth occurred at 1.8 |J,M P. The maximum NH4+ consumption rate was 426 ± 30 |J,g NH4+ L-1 hr-1, and the maximum uptake rate of P was 48±4 µg P L-1 hr-1. Uptake of N and P with time showed zero-order kinetics, likely due to substrate solubility limitations. The uptake ratio of N:P was approximately 7:1 on a weight basis. Natural concentrations of N and P in marine and estuarine systems after hydrocarbon spillage initially may not limit oil biodegradation but may become limiting if adequate flux does not occur to replenish N and P depleted by microbial consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号