首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Obesity is associated with significant microvascular complications including renal injuries and may induce end‐stage renal disease. Emerging studies have demonstrated microRNAs (miRNAs) are potential mediators in the pathophysiological process of nephropathy. The present study aimed to investigate the role of miR‐802 in obesity‐related nephropathy and potential molecular mechanisms. Through utilizing obese mouse model and human subjects, we explored the therapeutic benefits and clinical application of miR‐802 in protecting against nephropathy. Renal miR‐802 level was positively correlated with functional parameters, including blood urea nitrogen and creatinine in obese mice. Specific silencing of renal miR‐802 improved high fat diet (HFD)‐induced renal dysfunction, structural disorders and fibrosis. The up‐regulated inflammatory response and infiltrated macrophages were also significantly decreased in miR‐802 inhibitor‐treated obese mice. Mechanistically, miR‐802 directly bond to 3?‐UTR of NF‐κB‐repressing factor (NRF) and suppressed its expression. In clinical study, the circulating miR‐802 level was significantly increased in obese subjects, and positively correlated with plasma creatinine level but negatively correlated with creatinine clearance. Taken together, our findings provided evidence that miR‐802/NRF signalling was an important pathway in mediating obesity‐related nephropathy. It is a possible useful clinical approach of treating miR‐802 inhibitor to combat nephropathy.  相似文献   

2.
Obesity is a major and independent risk factor of kidney diseases. The pathogenic mechanisms of obesity‐associated renal injury are recognized to at least involve a lipid‐rich and pro‐inflammatory state of the renal tissues, but specific mechanisms establishing causal relation remain unknown. Saturated fatty acids are elevated in obesity, and known to induce chronic inflammation in kidneys. Myeloid differentiation protein 2 (MD2) is an important protein in lipopolysaccharide‐induced innate immunity response and inflammation. We suggested that obesity‐associated renal injury is regulated by MD2 thereby driving an inflammatory renal injury. The used three mouse models for in vivo study: MD2 knockout mice (KO) maintained on high fat diet (HFD), wild‐type mice on HFD plus L6H21, a specific MD2 inhibitor and KO mice given palmitic acid (PA) by IV injection. The in vitro studies were carried out in cultured renal tubular epithelial cells, mouse mesangial cells and primary macrophages, respectively. The HFD mice presented with increased hyperlipidemia, serum creatinine and proteinuria. Renal tissue from HFD mice had increased fibrosis, inflammatory cytokines, macrophage infiltration, and activation of NF‐κB and MAPKs. This HFD‐induced renal injury profile was not observed in KO mice or L6H21‐treated mice. Mice given PA mimmicked the HFD‐induced renal injury profiles, which were prevented by MD2 knockout. The in vitro data further confirmed MD2 mediates PA‐induced inflammation. MD2 is causally related with obesity‐associated renal inflammatory injury. We believe that MD2 is an attractive target for future therapeutic strategies in obesity‐associated kidney diseases.  相似文献   

3.
Renal fibrosis is the common pathological feature in a variety of chronic kidney diseases. Aging is highly associated with the progression of renal fibrosis. Among several determinants, mitochondrial dysfunction plays an important role in aging. However, the underlying mechanisms of mitochondrial dysfunction in age‐related renal fibrosis are not elucidated. Herein, we found that Wnt/β‐catenin signaling and renin–angiotensin system (RAS) activity were upregulated in aging kidneys. Concomitantly, mitochondrial mass and functions were impaired with aging. Ectopic expression of Klotho, an antagonist of endogenous Wnt/β‐catenin activity, abolished renal fibrosis in d ‐galactose (d ‐gal)‐induced accelerated aging mouse model and significantly protected renal mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species. In an established aging mouse model, dickkopf 1, a more specific Wnt inhibitor, and the mitochondria‐targeted antioxidant mitoquinone restored mitochondrial mass and attenuated tubular senescence and renal fibrosis. In a human proximal tubular cell line (HKC‐8), ectopic expression of Wnt1 decreased biogenesis and induced dysfunction of mitochondria, and triggered cellular senescence. Moreover, d ‐gal triggered the transduction of Wnt/β‐catenin signaling, which further activated angiotensin type 1 receptor (AT1), and then decreased the mitochondrial mass and increased cellular senescence in HKC‐8 cells and primary cultured renal tubular cells. These effects were inhibited by AT1 blocker of losartan. These results suggest inhibition of Wnt/β‐catenin signaling and the RAS could slow the onset of age‐related mitochondrial dysfunction and renal fibrosis. Taken together, our results indicate that Wnt/β‐catenin/RAS signaling mediates age‐related renal fibrosis and is associated with mitochondrial dysfunction.  相似文献   

4.
Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H(2)O(2) emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases.  相似文献   

5.
Impaired mitochondrial function and dysregulated energy metabolism have been shown to be involved in the pathological progression of kidney diseases such as acute kidney injury (AKI) and diabetic nephropathy. Hence, improving mitochondrial function is a promising strategy for treating renal dysfunction. NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an important subunit of mitochondrial complex I. In the present study, we found that NDUFV1 was reduced in kidneys of renal ischemia/reperfusion (I/R) mice. Meanwhile, renal I/R induced kidney dysfunction as evidenced by increases in BUN and serum creatinine, severe injury of proximal renal tubules, oxidative stress, and cell apoptosis. All these detrimental outcomes were attenuated by increased expression of NDUFV1 in kidneys. Moreover, knockdown of Ndufv1 aggravated cell insults induced by H2O2 in TCMK-1 cells, which further confirmed the renoprotective roles of NDUFV1. Mechanistically, NDUFV1 improved the integrity and function of mitochondria, leading to reduced oxidative stress and cell apoptosis. Overall, our data indicate that NDUFV1 has an ability to maintain mitochondrial homeostasis in AKI, suggesting therapies by targeting mitochondria are useful approaches for dealing with mitochondrial dysfunction associated renal diseases such as AKI.  相似文献   

6.
Oxidative stress induced by long‐term cyclosporine A (CsA) administration is a major cause of chronic nephrotoxicity, which is characterized by tubular atrophy, tubular cell apoptosis, and interstitial fibrosis in the progression of organ transplantation. Although hydrogen‐rich water (HRW) has been used to prevent various oxidative stress‐related diseases, its underlying mechanisms remain unclear. This study investigated the effects of HRW on CsA‐induced nephrotoxicity and its potential mechanisms. After administration of CsA (25 mg/kg/day), rats were treated with or without HRW (12 mL/kg) for 4 weeks. Renal function and vascular activity were investigated. Histological changes in kidney tissues were analyzed using Masson's trichrome and terminal deoxynucleotidyl transferase dUTP nick‐end labeling stains. Oxidative stress markers and the activation of the Kelch‐like ECH‐associated protein 1 (Keap1)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signaling pathway were also measured. We found that CsA increased the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), but it reduced glutathione (GSH) and superoxide dismutase (SOD) levels. Such alterations induced vascular dysfunction, tubular atrophy, interstitial fibrosis, and tubular apoptosis. This was evident secondary to an increase in urinary protein, serum creatinine, and blood urea nitrogen, ultimately leading to renal dysfunction. Conversely, HRW decreased levels of ROS and MDA while increasing the activity of GSH and SOD. This was accompanied by an improvement in vascular and renal function. Moreover, HRW significantly decreased the level of Keap1 and increased the expression of Nrf2, NADPH dehydrogenase quinone 1, and heme oxygenase 1. In conclusion, HRW restored the balance of redox status, suppressed oxidative stress damage, and improved kidney function induced by CsA via activation of the Keap1/Nrf2 signaling pathway.  相似文献   

7.
Salidroside is a major phenylethanoid glycoside in Rhodiola rosea L., a traditional Chinese medicine, with multiple biological activities. It has been shown that salidroside possesses protective effects for alleviating diabetic renal dysfunction, contrast‐induced‐nephropathy and other kidney diseases. However, the involved molecular mechanism was still not understood well. Herein, we examined the protective effects of salidroside in mice with Adriamycin (ADR)‐induced nephropathy and the underlying molecular mechanism. The results showed that salidroside treatment ameliorates proteinuria; improves expressions of nephrin and podocin; and reduces kidney fibrosis and glomerulosclerosis induced by ADR. Mechanistically, ADR induces a robust accumulation of β‐catenin in the nucleus and stimulates its downstream target gene expression. The application of salidroside largely abolishes the nuclear translocation of β‐catenin and thus inhibits its activity. Furthermore, the activation of β‐catenin almost completely counteracts the protective roles of salidroside in ADR‐injured podocytes. Taken together, our data indicate that salidroside ameliorates proteinuria, renal fibrosis and podocyte injury in ADR nephropathy, which may rely on inhibition of β‐catenin signalling pathway.  相似文献   

8.
The effect of dysfunctional mitochondria in several cell pathologies has been reported in renal diseases, including diabetic nephropathy and acute kidney injury. Previous studies have reported that mitochondrial transplantation provided surprising results in myocardial and liver ischemia, as well as in Parkinson's disease. We aimed to investigate the beneficial effects of isolated mitochondria transplantation from mesenchymal stem cells (MSCs) in vivo, to mitigate renal damage that arises from doxorubicin‐mediated nephrotoxicity and its action mechanism. In this study, a kidney model of doxorubicin‐mediated nephrotoxicity was used and isolated mitochondria from MSCs were transferred to the renal cortex of rats. The findings showed that the rate of isolated mitochondria from MSCs maintains sufficient membrane integrity, and was associated with a beneficial renal therapeutic effect. Following doxorubicin‐mediated renal injury, isolated mitochondria or vehicle infused into the renal cortex and rats were monitored for five days. This study found that mitochondrial transplantation decreased cellular oxidative stress and promoted regeneration of tubular cells after renal injury (P < .001, P = .009). Moreover, mitochondrial transplantation reduced protein accumulation of tubular cells and reversed renal deficits (P = .01, P < .001). Mitochondrial transplantation increased Bcl‐2 levels, and caspase‐3 levels decreased in injured renal cells (P < .015, P < .001). Our results provide a direct link between mitochondria dysfunction and doxorubicin‐mediated nephrotoxicity and suggest a therapeutic effect of transferring isolated mitochondria obtained from MSCs against renal injury. To our knowledge, this study is the first study in the literature that showed good therapeutic effects of mitochondrial transplantation in a nephrotoxicity model, which is under‐researched.  相似文献   

9.
Diabetic nephropathy (DN) is acknowledged as a serious chronic complication of diabetes mellitus. Nevertheless, its pathogenesis is complicated and unclear. Thus, in this study, the role of miR‐27a‐3p‐prohibitin/TMBIM6 signaling axis in the progression of DN was elucidated. Type 2 diabetic db/db mice and high glucose (HG)‐challenged HK‐2 cells were used as in vivo and in vitro models. Our results showed that miR‐27a‐3p was upregulated and prohibitin or transmembrane BAX inhibitor motif containing 6 (TMBIM6) was downregulated in the kidney tissues of db/db mice and HG‐treated HK‐2 cells. Silencing miR‐27a‐3p enhanced the expression of prohibitin and TMBIM6 in the kidney tissues and HK‐2 cells. Inhibition of miR‐27a‐3p improved functional injury, as evidenced by decreased blood glucose, urinary albumin, serum creatinine, and blood urea nitrogen levels. MiR‐27a‐3p silencing ameliorated renal fibrosis, reflected by reduced profibrogenic genes (e.g., transforming growth factor β1, fibronectin, collagen I and III, and α‐smooth muscle actin). Furthermore, inhibition of miR‐27a‐3p relieved mitochondrial dysfunction in the kidney of db/db mice, including upregulation of mitochondrial membrane potential, complex I and III activities, adenosine triphosphate, and mitochondrial cytochrome C, as well as suppressing reactive oxygen species production. In addition, miR‐27a‐3p silencing attenuated endoplasmic reticulum (ER) stress, reflected by reduced expression of p‐IRE1α, p‐eIF2α, XBP1s, and CHOP. Mechanically, we identified prohibitin and TMBIM6 as direct targets of miR‐27a‐3p. Inhibition of miR‐27a‐3p protected HG‐treated HK‐2 cells from apoptosis, extracellular matrix accumulation, mitochondrial dysfunction, and ER stress by regulating prohibitin or TMBIM6. Taken together, we reveal that miR‐27a‐3p‐prohibitin/TMBIM6 signaling axis regulates the progression of DN, which can be a potential therapeutic target.  相似文献   

10.
Obesity and its associated metabolic disorders such as diabetes, hepatic steatosis and chronic heart diseases are affecting billions of individuals. However there is no satisfactory drug to treat such diseases. In this study, we found that alisol A, a major active triterpene isolated from the Chinese traditional medicine Rhizoma Alismatis, could significantly attenuate high‐fat‐diet‐induced obesity. Our biochemical detection demonstrated that alisol A remarkably decreased lipid levels, alleviated glucose metabolism disorders and insulin resistance in high‐fat‐diet‐induced obese mice. We also found that alisol A reduced hepatic steatosis and improved liver function in the obese mice model.In addition, protein expression investigation revealed that alisol A had an active effect on AMPK/ACC/SREBP‐1c pathway. As suggested by the molecular docking study, such bioactivity of alisol A may result from its selective binding to the catalytic region of AMPK.Therefore, we believe that Alisol A could serve as a promising agent for treatment of obesity and its related metabolic diseases.  相似文献   

11.
Diabetic nephropathy is the leading cause of renal failure in the United States. The obese Zucker rat (OZR; fa/fa) is a commonly used model of type 2 diabetes and metabolic syndrome (MetS), and of the nephropathy and renal oxidative stress commonly seen in these disorders. Heterozygous lean Zucker rats (LZRs; fa/+) are susceptible to high‐fat diet (HFD)‐induced obesity and MetS. The present study was designed to investigate whether 4‐hydroxy‐2,2,6,6‐tetramethylpiperidine‐N‐oxyl (TEMPOL), a membrane‐permeable radical scavenger, could alleviate the renal effects of MetS in OZR and LZR fed a HFD, which resembles the typical “Western” diet. OZR and LZR were fed a HFD (OZR‐HFD and LZR‐HFD) or regular diet (OZR‐RD and LZR‐RD) and allowed free access to drinking water or water containing 1 mmol/l TEMPOL for 10 weeks. When compared to OZR‐RD animals, OZR‐HFD animals exhibited significantly higher levels of total renal cortical reactive oxygen species (ROS) production, plasma lipids, insulin, C‐reactive protein, blood urea nitrogen (BUN), creatinine (Cr), and urinary albumin excretion (P < 0.05); these changes were accompanied by a significant decrease in plasma high‐density lipoprotein levels (P < 0.05). The mRNA expression levels of desmin, tumor necrosis factor‐α (TNF‐α), nuclear factor κB (NFκB), and NAD(P)H oxidase‐1 (NOX‐1) were significantly higher in the renal cortical tissues of OZR‐HFD animals; NFκB p65 DNA binding activity as determined by electrophoretic mobility shift assay was also significantly higher in these animals. The same trends were noted in LZR‐HFD animals. Our data demonstrate that TEMPOL may prove beneficial in treating the early stages of the nephropathy often associated with MetS.  相似文献   

12.
13.
Epithelial‐to‐mesenchymal transition (EMT) plays a significant role in tubulointerstitial fibrosis, which is a hallmark of diabetic nephropathy. Thus, identifying the mechanisms of EMT activation could be meaningful. In this study, loss of miR‐30c accompanied with increased EMT was observed in renal tubules of db/db mice and cultured HK2 cells exposed to high glucose. To further explore the roles of miR‐30c in EMT and tubulointerstitial fibrosis, recombinant adeno‐associated viral vector was applied to manipulate the expression of miR‐30c. In vivo study showed that overexpression of miR‐30c suppressed EMT, attenuated renal tubulointerstitial fibrosis and reduced proteinuria, serum creatinine, and BUN levels. In addition, Snail1 was identified as a direct target of miR‐30c by Ago2 co‐immunoprecipitation, luciferase reporter, and Western blot assays. Downregulating Snail1 by siRNA reduced high glucose‐induced EMT in HK2 cells, and miR‐30c mimicked the effects. Moreover, miR‐30c inhibited Snail1‐TGF‐β1 axis in tubular epithelial cells undergoing EMT and thereby impeded the release of TGF‐β1; oppositely, knockdown of miR‐30c enhanced the secretion of TGF‐β1 from epitheliums and significantly promoted proliferation of fibroblasts and fibrogenesis of myofibroblasts, aggravated tubulointerstitial fibrosis, and dysfunction of diabetic nephropathy. These results suggest a protective role of miR‐30c against diabetic nephropathy by suppressing EMT via inhibiting Snail1‐TGF‐β1 pathway.  相似文献   

14.
Dyslipidemia is a well‐established condition proved to accelerate the progression of chronic kidney disease leading to tubulo‐interstitial injury. However, the molecular aspects of the dyslipidemia‐induced renal damage have not been fully clarified and in particular the role played by low‐density lipoproteins (LDLs). This study aimed to examine the effects of native non‐oxidized LDL on cellular oxidative metabolism in cultured human proximal tubular cells. By means of confocal microscopy imaging combined to respirometric and enzymatic assays it is shown that purified native LDL caused a marked increase of cellular reactive oxygen species (ROS) production, which was mediated by activation of NADPH oxidase(s) and by mitochondrial dysfunction by means of a ROS‐induced ROS release mechanism. The LDL‐dependent mitochondrial alterations comprised inhibition of the respiratory chain activity, enhanced ROS production, uncoupling of the oxidative phosphorylation efficiency, collapse of the mtΔΨ, increased Ca2+ uptake and loss of cytochrome c. All the above LDL‐induced effects were completely abrogated by chelating extracellular Ca2+ as well as by inhibition of the Ca2+‐activated cytoplas‐mic phospholipase A2, NADPH oxidase and mitochondrial permeability transition. We propose a mechanicistic model whereby the LDL‐induced intracellular redox unbalance is triggered by a Ca2+ inward flux‐dependent commencement of cPLA2 followed by activation of a lipid‐ and ROS‐based cross‐talking signalling pathway. This involves first oxidants production via the plasmamembrane NADPH oxidase and then propagates downstream to mitochondria eliciting redox‐ and Ca2+‐dependent dysfunctions leading to cell‐harming conditions. These findings may help to clarify the mechanism of dyslipidemia‐induced renal damage and suggest new potential targets for specific therapeutic strategies to prevent oxidative stress implicated in kidney diseases.  相似文献   

15.
Cisplatin (CP) is one of the most potent chemotherapeutic anti‐tumour drugs, and it has been implicated in renal toxicity. Oxidative stress has been proven to be involved in CP‐induced toxicity including nephrotoxicity. However, there is paucity of literature involving role of mitochondria in mediating CP‐induced renal toxicity, and its underlying mechanism remains unclear. Therefore, the present study was undertaken to examine the antioxidant potential of curcumin (CMN; a natural polyphenolic compound) against the mitochondrial toxicity of CP in kidneys of male rats. Acute toxicity was induced by a single intra‐peritoneal injection of CP (6 mg kg?1). We studied the ameliorative effect of CMN pre‐treatment (200 mg kg?1) on the toxicity of CP in rat kidney mitochondria. CP caused a significant elevation in the mitochondrial lipid peroxidation (LPO) levels and protein carbonyl (PC) content. Pre‐treatment of rat with CMN significantly replenished the mitochondrial LPO levels and PC content. It also restored the CP‐induced modulatory effects on altered enzymatic and non‐enzymatic antioxidants in kidney mitochondria. We hypothesize that the reno‐protective effects of CMN may be related to its predisposition to scavenge free radicals, and upregulate antioxidant machinery in kidney mitochondria. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Organ toxicity, including kidney injury, limits the use of cisplatin for the treatment of multiple human cancers. Hence, interventions to alleviate cisplatin‐induced nephropathy are of benefit to cancer patients. Recent studies have demonstrated that pharmacological inhibition of the Notch signaling pathway enhances cisplatin efficacy against several cancer cells. However, whether augmentation of the anti‐cancer effect of cisplatin by Notch inhibition comes at the cost of increased kidney injury is unclear. We show here that treatment of mice with cisplatin resulted in a significant increase in Notch ligand Delta‐like 1 (Dll1) and Notch1 intracellular domain (N1ICD) protein expression levels in the kidneys. N‐[N‐(3,5‐difluorophenacetyl)‐L‐alanyl]‐S‐phenylglycine t‐butyl ester (DAPT), a γ‐secretase inhibitor reversed cisplatin‐induced increase in renal N1ICD expression and plasma or urinary levels of predictive biomarkers of acute kidney injury (AKI). DAPT also mitigated cisplatin‐induced tubular injury and reduction in glomerular filtration rate. Real‐time multiphoton microscopy revealed marked necrosis and peritubular vascular dysfunction in the kidneys of cisplatin‐treated mice which were abrogated by DAPT. Cisplatin‐induced Dll1/Notch1 signaling was recapitulated in a human proximal tubule epithelial cell line (HK‐2). siRNA‐mediated Dll1 knockdown and DAPT attenuated cisplatin‐induced Notch1 cleavage and cytotoxicity in HK‐2 cells. These data suggest that Dll1‐mediated Notch1 signaling contributes to cisplatin‐induced AKI. Hence, the Notch signaling pathway could be a potential therapeutic target to alleviate renal complications associated with cisplatin chemotherapy.  相似文献   

17.
The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.  相似文献   

18.
19.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

20.
Ischemia reperfusion (I/R)‐induced acute kidney injury (AKI) is a common and serious condition. Irisin, an exercise‐induced hormone, improves mitochondrial function and reduces reactive oxygen species (ROS) production. Glutathione peroxidase 4 (GPX4) is a key regulator of ferroptosis and its inactivation aggravates renal I/R injury by inducing ROS production. However, the effect of irisin on GPX4 and I/R‐induced AKI is still unknown. To study this, male adult mice were subjected to renal I/R by occluding bilateral renal hilum for 30 min, which was followed by 24 hr reperfusion. Our results showed serum irisin levels were decreased in renal I/R mice. Irisin (250 μg/kg) treatment alleviated renal injury, downregulated inflammatory response, improved mitochondrial function, and reduced ER stress and oxidative stress after renal I/R, which were associated with upregulation of GPX4. Treated with RSL3 (a GPX4 inhibitor) abolished irisin's protective effect. Thus, irisin attenuates I/R‐induced AKI through upregulating GPX4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号