首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m?2 year?1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.  相似文献   

2.
Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO2 respiration rates, CH4 and N2O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO2 ha?1 year?1) than in natural forest (median = 35.9 Mg CO2 ha?1 year?1). Groundwater level had a stronger effect on soil CO2 emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO2 ha?1 year?1 for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N2O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha?1 year?1). Deeper groundwater levels induced high N2O emissions, which constitute about 15% of total GHG emissions. CH4 emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO2 emissions. Surprisingly, the CO2 emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.  相似文献   

3.
Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal‐feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2O‐N m?2. In experiment II, with a higher soil‐to‐hay ratio and mites, springtails and potworms as faunal treatments, N2O emissions increased with potworms from 51.9 (control) to 123.5 mg N2O‐N m?2. Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2O emissions by 5 days (< 0.001), but the cumulative N2O emissions remained unaffected. We propose that increased soil aeration by the soil fauna reduced N2O emissions in experiment I, whereas in experiment II N2O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2O emissions from soil and should therefore be an integral part of future N2O studies.  相似文献   

4.
Functional diversity (FD), species richness and community composition   总被引:15,自引:0,他引:15  
Functional diversity is an important component of biodiversity, yet in comparison to taxonomic diversity, methods of quantifying functional diversity are less well developed. Here, we propose a means for quantifying functional diversity that may be particularly useful for determining how functional diversity is related to ecosystem functioning. This measure of functional diversity “FD” is defined as the total branch length of a functional dendrogram. Various characteristics of FD make it preferable to other measures of functional diversity, such as the number of functional groups in a community. Simulating species' trait values illustrates how the relative importance of richness and composition for FD depends on the effective dimensionality of the trait space in which species separate. Fewer dimensions increase the importance of community composition and functional redundancy. More dimensions increase the importance of species richness and decreases functional redundancy. Clumping of species in trait space increases the relative importance of community composition. Five natural communities show remarkably similar relationships between FD and species richness.  相似文献   

5.
6.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

7.
丁琦  白红英  李西祥  路莉 《生态学报》2007,27(7):2823-2831
以冬小麦田耕作层原状土为研究对象,采用了室内培养实验的方法,观测了小麦生长期不同阶段根系对土壤N2O排放的影响,及对土壤N2O排放的水、热效应的影响。结果表明,在实验的各个时期土壤N2O平均排放通量麦田均高于休耕地,在孕穗期麦田N2O排放通量出现最大值;而随根系质量和活性下降,生殖后期N2O排放量减少。小麦主根区与行间土壤N2O排放量存在差异,其主要表现在孕穗期,行间N2O排放通量是主根区的5.64倍,但开花期和成熟期差异表现并不明显。在小麦开花期和成熟期土壤N2O排放温度效应受作物根系的影响显著,而孕穗期不明显。小麦根系对水分效应影响主要集中表现在15~20cm的土层。同时,研究还发现种植小麦使土壤中N2O排放的主要区域扩大。  相似文献   

8.
凋落物年龄和氮、磷添加交互作用对杉木林土壤N2O排放的影响氧化亚氮(N2O)是一种重要的温室气体,增温潜势较大,其浓度增加影响全球气候变化。由于凋落物分解影响碳和养分循环,土壤N2O排放受凋落物分解作用,而凋落物年龄和氮、磷添加影响凋落物分解,潜在影响土壤N2O的排放。然而,凋落物年龄和养分添加对土壤N2O排放的交互作用及其机制目前还没有报道,这限制了凋落物分解对N2O排放的影响评价。本研究以杉木(Cunninghamia lanceolata)不同年龄凋落物为研究对象,通过氮、磷添加处理,研究了养分和凋落物年龄对N2O排放的影响及其机制。研究结果显示,幼龄凋落物主要通过调节碳氮比来影响N2O排放。氮添加主要通过调节凋落物碳氮比、土壤pH以及与N2O产生相关的微生物功能基因所编码的土壤酶活性来影响N2O排放,整体上促进N2O排放。磷添加显著降低凋落物碳氮比,进而作用于N2O排放,该途径促进N2O排放。同时,磷添加提高土壤有效磷水平,潜在降低N2O排放,整体上降低土壤N2O排放。凋落物年龄和养分添加交互作用于土壤N2O排放。因此,在森林经营管理中,评价不同管理措施,尤其是间伐和选择性砍伐等导致不同凋落物输入的管理活动对土壤N2O排放的影响时,应同时考虑养分输入和凋落物年龄的潜在影响。  相似文献   

9.
Analyses of the complete genomes of sequenced denitrifying bacteria revealed that approximately 1/3 have a truncated denitrification pathway, lacking the nosZ gene encoding the nitrous oxide reductase. We investigated whether the number of denitrifiers lacking the genetic ability to synthesize the nitrous oxide reductase in soils is important for the proportion of N2O emitted by denitrification. Serial dilutions of the denitrifying strain Agrobacterium tumefaciens C58 lacking the nosZ gene were inoculated into three different soils to modify the proportion of denitrifiers having the nitrous oxide reductase genes. The potential denitrification and N2O emissions increased when the size of inoculated C58 population in the soils was in the same range as the indigenous nosZ community. However, in two of the three soils, the increase in potential denitrification in inoculated microcosms compared with the noninoculated microcosms was higher than the increase in N2O emissions. This suggests that the indigenous denitrifier community was capable of acting as a sink for the N2O produced by A. tumefaciens. The relative amount of N2O emitted also increased in two soils with the number of inoculated C58 cells, establishing a direct causal link between the denitrifier community composition and potential N2O emissions by manipulating the proportion of denitrifiers having the nosZ gene. However, the number of denitrifiers which do not possess a nitrous oxide reductase might not be as important for N2O emissions in soils having a high N2O uptake capacity compared with those with lower. In conclusion, we provide a proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products, indicating that the extent of the reduction of N2O to N2 by the denitrifying community can have a genetic basis.  相似文献   

10.
为明确高寒草甸土壤细菌物种组成及功能结构对草地环境恶化的响应规律, 本文采用高通量基因测序技术对高寒草甸未退化、轻度退化、中度退化、重度退化和极重度退化草地土壤细菌的组成、格局和功能进行了研究。结果表明: 高寒草甸土壤优势细菌为酸杆菌门、放线菌门、浮霉菌门、变形菌门和疣微菌门, 在土壤细菌中占比分别为16%‒18%、9%‒12%、12%‒14%、23%‒29%和11%‒12%。退化草地中土壤细菌物种组成明显改变, 变形菌门细菌丰度降低, 酸杆菌门和浮霉菌门丰度增加, 不同草地科水平细菌丰度差异因土层而异。草地退化对细菌Chao1指数无影响, 轻度退化提高了细菌Simpson指数, 重度退化草地土壤细菌Shannon-Wiener指数最高。Faprotax细菌功能分组以化能异养、硝化作用、亚硝酸盐氧化及硫代谢作用为主, 草地退化改变了微生物介导的碳循环、氮循环、硫循环、铁循环和锰循环。重度及极重度退化提高了细菌氨氧化功能作用, 降低了硫化物、亚硝酸盐氧化及尿素水解作用; 草地退化过程中细菌化能异养、芳香族化合物降解及反硝化作用功能等均呈先降低后升高的变化趋势, 中度退化阶段是微生物群落生态功能结构转变的拐点。高寒草甸退化改变了土壤细菌的群落及功能结构, 土壤含水量、pH、总有机碳、全氮、全钾和有效氮磷比是土壤细菌群落及功能结构变化的主要驱动因子。  相似文献   

11.
Climate and land‐use models project increasing occurrence of high temperature and water deficit in both agricultural production systems and terrestrial ecosystems. Episodic soil wetting and subsequent drying may increase the occurrence and magnitude of pulsed biogeochemical activity, affecting carbon (C) and nitrogen (N) cycles and influencing greenhouse gas (GHG) emissions. In this study, we provide the first data to explore the responses of carbon dioxide (CO2) and nitrous oxide (N2O) fluxes to (i) temperature, (ii) soil water content as percent water holding capacity (%WHC), (iii) substrate availability throughout, and (iv) multiple soil drying and rewetting (DW) events. Each of these factors and their interactions exerted effects on GHG emissions over a range of four (CO2) and six (N2O) orders of magnitude. Maximal CO2 and N2O fluxes were observed in environments combining intermediate %WHC, elevated temperature, and sufficient substrate availability. Amendments of C and N and their interactions significantly affected CO2 and N2O fluxes and altered their temperature sensitivities (Q10) over successive DW cycles. C amendments significantly enhanced CO2 flux, reduced N2O flux, and decreased the Q10 of both. N amendments had no effect on CO2 flux and increased N2O flux, while significantly depressing the Q10 for CO2, and having no effect on the Q10 for N2O. The dynamics across DW cycles could be attributed to changes in soil microbial communities as the different responses to wetting events in specific group of microorganisms, to the altered substrate availabilities, or to both. The complex interactions among parameters influencing trace gas fluxes should be incorporated into next generation earth system models to improve estimation of GHG emissions.  相似文献   

12.
黄土性土壤剖面不同层次N2O浓度的原位监测   总被引:2,自引:0,他引:2  
用土壤探头法对黄土性土壤玉米-小麦轮作体系下不同剖面层次N2O浓度变化进行了3a的田间原位监测.结果证实了黄土性土壤深层反硝化作用的存在,且N2O浓度有着明显的时间和空间变异.表现为N2O浓度受土壤气候条件(温度和降水)和生产管理措施的影响,丰水年明显高于亏水年;在降水或灌溉后出现瞬时N2O浓度峰.由于小麦和玉米生长特点和作物生长季气侯特点的差异,玉米生长季土壤剖面各层N2O浓度显著高于小麦生长期土壤剖面各层的浓度.统计分析结果表明:土壤剖面中不同土层N2O浓度的变化对照处理为60cm ≈ 90cm ≈150cm> 30cm> 10cm,而施肥处理为60cm > 90cm ≈150cm> 30cm> 10cm.深层土壤N2O的主要来源是土壤的反硝化作用,施肥显著地增加各土壤层次N2O的产生量.  相似文献   

13.
14.
Higher tree species richness generally increases the storage of soil organic carbon (SOC). However, less attention is paid to the influence of varied tree species composition on SOC storage. Recently, the perspectives for the stronger persistence of SOC caused by the higher molecular diversity of organic compounds were proposed. Therefore, the influences of tree species richness and composition on the molecular diversity of SOC need to be explored. In this study, an index of the evenness of diverse SOC chemical components was proposed to represent the potential resistance of SOC to decomposition under disturbances. Six natural forest types were selected encompassing a diversity gradient, ranging from cold temperate to tropical forests. We examined the correlations of tree species richness, composition, and functional diversity, with the evenness of SOC chemical components at a molecular level by 13C nuclear magnetic resonance. Across the range, tree species richness correlated to the evenness of SOC chemical components through tree species composition. The negative correlation of evenness of SOC chemical components with tree species composition, and the positive correlation of evenness of SOC chemical components with tree functional diversity were found. These indicate the larger difference in tree species composition and the lower community functional diversity resulted in the higher heterogeneity of SOC chemical components among the communities. The positive correlation of the evenness of SOC chemical components with the important value of indicator tree species, further revealed the specific tree species contributing to the higher evenness of SOC chemical components in each forest type. Soil fungal and bacterial α-diversity had effect on the evenness of SOC chemical components. These findings suggest that the indicator tree species conservation might be preferrable to simply increasing tree species richness, for enhancing the potential resistance of SOC to decomposition.  相似文献   

15.
Shifts in precipitation regimes are an inherent component of climate change, but in low‐energy systems are often assumed to be less important than changes in temperature. Because soil moisture is the hydrological variable most proximally linked to plant performance during the growing season in arctic‐alpine habitats, it may offer the most useful perspective on the influence of changes in precipitation on vegetation. Here we quantify the influence of soil moisture for multiple vegetation properties at fine spatial scales, to determine the potential importance of soil moisture under changing climatic conditions. A fine‐scale data set, comprising vascular species cover and field‐quantified ecologically relevant environmental parameters, was analysed to determine the influence of soil moisture relative to other key abiotic predictors. Soil moisture was strongly related to community composition, species richness and the occurrence patterns of individual species, having a similar or greater influence than soil temperature, pH and solar radiation. Soil moisture varied considerably over short distances, and this fine‐scale heterogeneity may contribute to offsetting the ecological impacts of changes in precipitation for species not limited to extreme soil moisture conditions. In conclusion, soil moisture is a key driver of vegetation properties, both at the species and community level, even in this low‐energy system. Soil moisture conditions represent an important mechanism through which changing climatic conditions impact vegetation, and advancing our predictive capability will therefore require a better understanding of how soil moisture mediates the effects of climate change on biota.  相似文献   

16.
Using prairie biomass as a renewable source of energy may constitute an important opportunity to improve the environmental sustainability of managed land. To date, assessments of the feasibility of using prairies for bioenergy production have focused on marginal areas with low yield potential. Growing prairies on more fertile soil or with moderate levels of fertilization may be an effective means of increasing yields, but increased fertility often reduces plant community diversity. At a fertile site in central Iowa with high production potential, we tested the hypothesis that nitrogen fertilization would increase aboveground biomass production but would decrease diversity of prairies sown and managed for bioenergy production. Over a 3 year period (years 2–4 after seeding), we measured aboveground biomass after plant senescence and species and functional‐group diversity in June and August for multispecies mixtures of prairie plants that received no fertilizer or 84 kg N ha?1 year?1. We found that nitrogen fertilization increased aboveground biomass production, but with or without fertilization, the prairies produced a substantial amount of biomass: averaging (±SE) 12.2 ± 1.3 and 9.1 ± 1.0 Mg ha?1 in fertilized and unfertilized prairies, respectively. Unfertilized prairies had higher species diversity in June, whereas fertilized prairies had higher species diversity in August at the end of the study period. Functional‐group diversity was almost always higher in fertilized prairies. Composition of unfertilized prairies was characterized by native C4 grasses and legumes, whereas fertilized prairies were characterized by native C3 grasses and forbs. Although most research has found that nitrogen fertilization reduces prairie diversity, our results indicate that early‐spring nitrogen fertilization, when used with a postsenescence annual harvest, may increase prairie diversity. Managing prairies for bioenergy production, including the judicious use of fertilization, may be an effective means of increasing the amount of saleable products from managed lands while potentially increasing plant diversity.  相似文献   

17.
Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon‐specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity–elevation relationships.  相似文献   

18.
Resource availability and heterogeneity are recognized as two essential environmental aspects to determine species diversity and community abundance. However, how soil resource availability and heterogeneity determine species diversity and community abundance in highly heterogeneous and most fragile karst landscapes is largely unknown. We examined the effects of soil resource availability and heterogeneity on plant community composition and quantified their relative contribution by variation partitioning. Then, a structural equation model (SEM) was used to further disentangle the multiple direct and indirect effects of soil resource availability on plant community composition. Species diversity was significantly influenced by the soil resource availability in shrubland and woodland but not by the heterogeneity in woodland. Abundance was significantly affected by both soil resource availability and heterogeneity, whereas variation partitioning results showed that soil resource availability explained the majority of the variance in abundance, and the contribution of soil resource heterogeneity was marginal. These results indicated that soil resource availability plays a more important role in determining karst plant community composition than soil resource heterogeneity. Our SEMs further found that the multiple direct and indirect processes of soil resource availability in determining karst species diversity and abundance were different in different vegetation types. Soil resource availability and heterogeneity both played a certain role in determining karst plant community composition, while the importance of soil resource availability far exceeded soil resource heterogeneity. We propose that steering community restoration and reconstruction should be highly dependent on soil resource availability, and multiple direct and indirect pathways of soil resource availability for structuring karst plant communities need to be taken into account.  相似文献   

19.
开放式空气CO2增高对稻田CH4和N2O排放的影响   总被引:9,自引:3,他引:9  
在FACE(free aircarbondioxideenrichment)平台上 ,采用静态暗箱 气相色谱法观测研究了大气CO2 浓度增加对稻田CH4和N2 O排放的影响 .结果表明 ,在 15 0和 2 5 0kgN·hm-2 两种氮肥水平下大气CO2 浓度增加 2 0 0 μmol·mol-1均明显促进水稻生长 ,水稻生物量积累 .大气CO2 浓度增加对 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田CH4排放均无显著影响 ,并简要分析了与现有文献报道结果不一致的原因 .大气CO2 浓度增加也未导致 15 0和 2 5 0kgN·hm-2 两种氮肥水平下稻田N2 O排放的明显变化 ,与大多数研究结果一致 .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号