首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
    
Abundant citizen science data on species occurrences are becoming increasingly available and enable identifying composition of communities occurring at multiple sites with high temporal resolution. However, for species displaying temporary patterns of local occurrences that are transient to some sites, biodiversity measures are clearly dependent on the criteria used to include species into local species lists. Using abundant opportunistic citizen science data from frequently visited wetlands, we investigated the sensitivity of α‐ and β‐diversity estimates to the use raw versus detection‐corrected data and to the use of inclusion criteria for species presence reflecting alternative site use. We tested seven inclusion criteria (with varying number of days required to be present) on time series of daily occurrence status during a breeding season of 90 days for 77 wetland bird species. We show that even when opportunistic presence‐only observation data are abundant, raw data may not produce reliable local species richness estimates and rank sites very differently in terms of species richness. Furthermore, occupancy model based α‐ and β‐diversity estimates were sensitive to the inclusion criteria used. Total species lists (all species observed at least once during a season) may therefore mask diversity differences among sites in local communities of species, by including vagrant species on potentially breeding communities and change the relative rank order of sites in terms of species richness. Very high sampling effort does not necessarily free opportunistic data from its inherent bias and can produce a pattern in which many species are observed at least once almost everywhere, thus leading to a possible paradox: The large amount of biological information may hinder its usefulness. Therefore, when prioritizing among sites to manage or preserve species diversity estimates need to be carefully related to relevant inclusion criteria depending on the diversity estimate in focus.  相似文献   

2.
    

Aim

Citizen science is a cost-effective potential source of invasive species occurrence data. However, data quality issues due to unstructured sampling approaches may discourage the use of these observations by science and conservation professionals. This study explored the utility of low-structure iNaturalist citizen science data in invasive plant monitoring. We first examined the prevalence of invasive taxa in iNaturalist plant observations and sampling biases associated with these data. Using four invasive species as examples, we then compared iNaturalist and professional agency observations and used the two datasets to model suitable habitat for each species.

Location

Hawai'i, USA.

Methods

To estimate the prevalence of invasive plant data, we compared the number of species and observations recorded in iNaturalist to botanical checklists for Hawai'i. Sampling bias was quantified along gradients of site accessibility, protective status and vegetation disturbance using a bias index. Habitat suitability for four invasive species was modelled in Maxent, using observations from iNaturalist, professional agencies and stratified subsets of iNaturalist data.

Results

iNaturalist plant observations were biased towards invasive species, which were frequently recorded in areas with higher road/trail density and vegetation disturbance. Professional observations of four example invasive species tended to occur in less accessible, native-dominated sites. Habitat suitability models based on iNaturalist versus professional data showed moderate overlap and different distributions of suitable habitat across vegetation disturbance classes. Stratifying iNaturalist observations had little effect on how suitable habitat was distributed for the species modelled in this study.

Main Conclusions

Opportunistic iNaturalist observations have the potential to complement and expand professional invasive plant monitoring, which we found was often affected by inverse sampling biases. Invasive species represented a high proportion of iNaturalist plant observations, and were recorded in environments that were not captured by professional surveys. Combining the datasets thus led to more comprehensive estimates of suitable habitat.  相似文献   

3.
    
Across a large mountain area of the western Swiss Alps, we used occurrence data (presence‐only points) of bird species to find suitable modelling solutions and build reliable distribution maps to deal with biodiversity and conservation necessities of bird species at finer scales. We have performed a multi‐scale method of modelling, which uses distance, climatic, and focal variables at different scales (neighboring window sizes), to estimate the efficient scale of each environmental predictor and enhance our knowledge on how birds interact with their complex environment. To identify the best radius for each focal variable and the most efficient impact scale of each predictor, we have fitted univariate models per species. In the last step, the final set of variables were subsequently employed to build ensemble of small models (ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as tools of conservation. We could build useful habitat suitability models for the three groups of species in the national red list. Our results indicate that, in general, the most important variables were in the group of bioclimatic variables including “Bio11” (Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential foraging, feeding and nesting sites. Our distribution maps are useful for identifying the most threatened species and their habitat and also for improving conservation effort to locate bird hotspots. It is a powerful strategy to improve the ecological understanding of the distribution of bird species in a dynamic heterogeneous environment.  相似文献   

4.
    
Large-scale biodiversity databases have great potential for quantifying long-term trends of species, but they also bring many methodological challenges. Spatial bias of species occurrence records is well recognized. Yet, the dynamic nature of this spatial bias – how spatial bias has changed over time – has been largely overlooked. We examined the spatial bias of species occurrence records within multiple biodiversity databases in Germany and tested whether spatial bias in relation to land cover or land use (urban and protected areas) has changed over time. We focused our analyses on urban and protected areas as these represent two well-known correlates of sampling bias in biodiversity datasets. We found that the proportion of annual records from urban areas has increased over time while the proportion of annual records within protected areas has not consistently changed. Using simulations, we examined the implications of this changing sampling bias for estimation of long-term trends of species' distributions. When assessing biodiversity change, our findings suggest that the effects of spatial bias depend on how it affects sampling of the underlying land-use change drivers affecting species. Oversampling of regions undergoing the greatest degree of change, for instance near human settlements, might lead to overestimation of the trends of specialist species. For robust estimation of the long-term trends in species' distributions, analyses using species occurrence records may need to consider not only spatial bias, but also changes in the spatial bias through time.  相似文献   

5.
6.
    
The extensive spatial and temporal coverage of many citizen science datasets (CSD) makes them appealing for use in species distribution modeling and forecasting. However, a frequent limitation is the inability to validate results. Here, we aim to assess the reliability of CSD for forecasting species occurrence in response to national forest management projections (representing 160,366 km2) by comparison against forecasts from a model based on systematically collected colonization–extinction data. We fitted species distribution models using citizen science observations of an old‐forest indicator fungus Phellinus ferrugineofuscus. We applied five modeling approaches (generalized linear model, Poisson process model, Bayesian occupancy model, and two MaxEnt models). Models were used to forecast changes in occurrence in response to national forest management for 2020‐2110. Forecasts of species occurrence from models based on CSD were congruent with forecasts made using the colonization–extinction model based on systematically collected data, although different modeling methods indicated different levels of change. All models projected increased occurrence in set‐aside forest from 2020 to 2110: the projected increase varied between 125% and 195% among models based on CSD, in comparison with an increase of 129% according to the colonization–extinction model. All but one model based on CSD projected a decline in production forest, which varied between 11% and 49%, compared to a decline of 41% using the colonization–extinction model. All models thus highlighted the importance of protected old forest for P. ferrugineofuscus persistence. We conclude that models based on CSD can reproduce forecasts from models based on systematically collected colonization–extinction data and so lead to the same forest management conclusions. Our results show that the use of a suite of models allows CSD to be reliably applied to land management and conservation decision making, demonstrating that widely available CSD can be a valuable forecasting resource.  相似文献   

7.
    
The assessment of population trends is fundamental in conservation science, but requires a monitoring programme with a specific sampling scheme that is often unrealizable due to high operating costs. For this reason, and considering that historical data would be very valuable for the assessment of overall trends, we developed a method for analysing population trends by using census data collected with the same survey technique, but acquired with different sampling strategies. Data on three bird species (skylark Alauda arvensis, swallow Hirundo rustica and nightingale Luscinia megarhynchos) coming from different point count surveys performed in Lombardy (Italy) between 1992 and 2005 were used. We corrected the bias due to the different sampling schemes by defining a population index as the ratio between the numbers of observed and expected (from a habitat suitability model) bird pairs in each point count. For each species, the overall trend for the period was assessed by fitting the mean population index calculated for each year. Population indices showed a significant negative trend for the skylark and nightingale and a marginally significant negative trend for the swallow. Trends were more negative in marginally suitable than in highly suitable habitats for all species. Validation of the population indices using an unbiased independent data set showed the effectiveness of our method in estimating population variations. However, its application must be considered carefully when the explained deviance of the suitability model is low or when land use may have changed substantially.  相似文献   

8.
    
In recent decades, community groups have transformed habitat restoration, pest control and species translocations in New Zealand. Large areas of wild New Zealand benefit hugely from ongoing management by community‐based restoration groups. Areas near cities and towns have especially good access to pools of keen volunteers. Community groups are involved in monitoring progress with their work, as well as monitoring biodiversity changes in general at their project sites. New tools powered by modern technologies are creating the opportunity for New Zealand's community volunteers to play a transformative role in biodiversity monitoring for either purpose. These tools are reducing the resources and expertise required for species detection and identification. Smartphones with cameras, GPS, audio recorders and data apps make it easier than ever to record species observations. Crowd‐sourced identification of species in photographs and sounds loaded onto NatureWatch NZ allow volunteers to make observations of a much wider range of taxa than just common birds and trees. Realising this potential requires community groups, scientists and their institutions to collaborate in building and maintaining simple, accessible monitoring systems that (i) require and promote standard monitoring methods, (ii) provide efficient data entry in standard formats, (iii) generate automated results of use to community groups and (iv) facilitate public sharing of data to contribute to regional, national and global biodiversity monitoring. Some New Zealand monitoring systems developed recently to assist community‐based restoration groups with monitoring mammalian predator control are good examples of this approach. Making this happen at a large scale across many community groups and taxa requires increased and coordinated long‐term institutional support for monitoring systems and training.  相似文献   

9.
10.
11.
12.
    
Despite acquisition of a substantial catalog of telemetry data from Steller sea lions (Eumetopias jubatus) over the past two decades, scientists still lack comprehensive regionally explicit knowledge about Steller sea lion habitat use. The Platforms of Opportunity data contain records of Steller sea lion sightings throughout the species’ entire range and have potential to fill gaps in knowledge about their spatial use; however, the data have not previously been used because effort (e.g., time spent surveying or area sampled) was not recorded when sightings were obtained. For this study a novel approach was used to overcome the lack of effort data through development of an effort index and a Bayesian negative binomial model. The model quantified Steller sea lion encounter rates and associated uncertainty within 15 × 15 km2 grid cells across the species’ entire range. Year‐round, as well as breeding and nonbreeding season encounter rates were estimated. The results of this analysis identify several previously undocumented areas of high use by Steller sea lions, indicate that only 37% of Steller sea lion high‐use areas fall within designated critical habitat, and demonstrate that use of depth and distance from shore as indicators of Steller sea lion habitat is contraindicated.  相似文献   

13.
    
The greatest common threat to birds in Madagascar has historically been from anthropogenic deforestation. During recent decades, global climate change is now also regarded as a significant threat to biodiversity. This study uses Maximum Entropy species distribution modeling to explore how potential climate change could affect the distribution of 17 threatened forest endemic bird species, using a range of climate variables from the Hadley Center's HadCM3 climate change model, for IPCC scenario B2a, for 2050. We explore the importance of forest cover as a modeling variable and we test the use of pseudo‐presences drawn from extent of occurrence distributions. Inclusion of the forest cover variable improves the models and models derived from real‐presence data with forest layer are better predictors than those from pseudo‐presence data. Using real‐presence data, we analyzed the impacts of climate change on the distribution of nine species. We could not predict the impact of climate change on eight species because of low numbers of occurrences. All nine species were predicted to experience reductions in their total range areas, and their maximum modeled probabilities of occurrence. In general, species range and altitudinal contractions follow the reductive trend of the Maximum presence probability. Only two species (Tyto soumagnei and Newtonia fanovanae) are expected to expand their altitude range. These results indicate that future availability of suitable habitat at different elevations is likely to be critical for species persistence through climate change. Five species (Eutriorchis astur, Neodrepanis hypoxantha, Mesitornis unicolor, Euryceros prevostii, and Oriola bernieri) are probably the most vulnerable to climate change. Four of them (E. astur, M. unicolor, E. prevostii, and O. bernieri) were found vulnerable to the forest fragmentation during previous research. Combination of these two threats in the future could negatively affect these species in a drastic way. Climate change is expected to act differently on each species and it is important to incorporate complex ecological variables into species distribution models.  相似文献   

14.
    
Waterbird species have different requirements with respect to their non‐breeding areas, aiming to survive and gain condition during the non‐breeding period. Selection of non‐breeding areas could change over time and space driven by climate change and species habitat requirements. To help explain the mechanism shaping non‐breeding area selection, we provide site‐specific analyses of distributional changes in wintering waterbirds in central Europe, located at the centre of their flyways. We use wintering waterbirds as a highly dynamic model group monitored over a long‐time scale of 50 years (1966–2015). We identified species habitat requirements and changes in habitat use at the level of 733 individual non‐breeding (specifically wintering) sites for 12 waterbird species using citizen‐science monitoring data. We calculated site‐specific mean numbers and estimated site‐specific trends in numbers. The site‐specific approach revealed a general effect of mean winter temperature of site (seven of 12 species), wetland type (all species) and land cover (all species) on site‐specific numbers. We found increasing site‐specific trends in numbers in the northern and/or eastern part of the study area (Mute Swan Cygnus olor, Eurasian Teal Anas crecca, Common Pochard Aythya ferina, Great Cormorant Phalacrocorax carbo and Eurasian Coot Fulica atra). Common Merganser Mergus merganser, Great Cormorant, Grey Heron Ardea cinerea, Common Pochard, Eurasian Coot and Common Moorhen Galinulla chloropus increased their site‐specific numbers on standing industrial waters with traditionally low fish stock. The site‐specific dynamics of bird numbers helped us to identify general preference for sites reducing winter harshness (warmer areas, running waters and more wetlands in the site vicinity), as well as indicating climate‐driven changes in spatial use of wintering sites (northern/north‐eastern range changes and changes in preference for industrial waters). This fine‐scale (site‐specific) approach can reveal large‐scale range and distribution shifts driven by climate and environmental changes regardless of the availability of large‐scale datasets.  相似文献   

15.
    

Aim

Climate change is expected to have major impacts on terrestrial biodiversity at all ecosystem levels, including reductions in species‐level distribution and abundance. We aim to test the extent to which land use management, such as setting‐aside forest from production, could reduce climate‐induced biodiversity impacts for specialist species over large geographical gradients.

Location

Sweden.

Methods

We applied ensembles of species distribution models based on citizen science data for six species of red‐listed old‐forest indicator fungi confined to spruce dead wood. We tested the effect on species habitat suitabilities of alternative climate change scenarios and varying amounts of forest set‐aside from production over the coming century.

Results

With 3.6% of forest area set‐aside from production and assuming no climate change, overall habitat suitabilities for all six species were projected to increase in response to maturing spruce in set‐aside forest. However, overall habitat suitabilities for all six species were projected to decline under climate change scenario RCP4.5 (intermediate–low emissions), with even greater declines projected under RCP 8.5 (high emissions). Increasing the amount of forest set‐aside to 16% resulted in significant increases in overall habitat suitability, with one species showing an increase. A further increase to 32% forest set‐aside resulted in considerably more positive trends, with three of six species increasing.

Main conclusions

There is interspecific variation in the importance of future macroclimate and resource availability on species occurrence. However, large‐scale conservation measures, such as increasing resource availability through setting aside forest from production, could reduce future negative effects from climate change, and early investment in conservation is likely to reduce the future negative impacts of climate change on specialist species.  相似文献   

16.
    
J. Liira  K. Kohv 《Plant biosystems》2013,147(1):211-220
Abstract

We quantified the effects of anthropogenic disturbances on the structure and biodiversity of boreal forests on acidic soils and created a statistically supported rational set of indicators to monitor the stand “naturalness”. For that, we surveyed various traits of tree layer, understory, herb layer, forest floor and several widely accepted biodiversity epiphytic indicators in 252 old‐aged boreal stands in Estonia, mostly dominated by Scots pine or Norway spruce. Multifactorial general linear model analyses showed that many forest characteristics and potential indicators were confounded by the gradient of soil productivity (reflected by the forest site type), local biogeographic gradients and also by stand age. Considering confounding effects, boreal forests in a near‐natural state have more large‐diameter trees (diameter at breast height >40 cm) and larger variety of diameter classes, higher proportion of spruce or deciduous trees, a larger amount of coarse woody debris in various stages, a more closed tree canopy and denser understory than managed mature forests. By increasing light availability above the field layer, forest management indirectly increases the coverage of herbs and lichens on the forest floor but reduces the alpha‐ and beta‐diversity of herbs and the proportion of graminoids. Human disturbances reduce the relative incidence of many commonly accepted biodiversity indicators such as indicator lichens, woodpeckers, wood‐dwelling insects or fungi on trees. The test for the predictive power of characteristics reacting on disturbance revealed that only a fraction of them appeared to be included in a diagnostic easy‐to‐apply set of indicators to assess the nature quality of boreal forest: the amount of dead wood, the proportion of deciduous trees, the presence of specially shaped trees and woodpeckers and, as an indicator of disturbances, the forest herb Melampyrum pratensis. Many of these indicators have already been implemented in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号