首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
In the present study, we investigated the role of Trichoderma virens (TriV_JSB100) spores or cell‐free culture filtrate in the regulation of growth and activation of the defence responses of tomato (Solanum lycopersicum) plants against Fusarium oxysporum f. sp. lycopersici by the development of a biocontrol–plant–pathogen interaction system. Two‐week‐old tomato seedlings primed with TriV_JSB100 spores cultured on barley grains (BGS) or with cell‐free culture filtrate (CF) were inoculated with Fusarium pathogen under glasshouse conditions; this resulted in significantly lower disease incidence in tomato Oogata‐Fukuju plants treated with BGS than in those treated with CF. To dissect the pathways associated with this response, jasmonic acid (JA) and salicylic acid (SA) signalling in BGS‐ and CF‐induced resistance was evaluated using JA‐ and SA‐impaired tomato lines. We observed that JA‐deficient mutant def1 plants were susceptible to Fusarium pathogen when they were treated with BGS. However, wild‐type (WT) BGS‐treated tomato plants showed a higher JA level and significantly lower disease incidence. SA‐deficient mutant NahG plants treated with CF were also found to be susceptible to Fusarium pathogen and displayed low SA levels, whereas WT CF‐treated tomato plants exhibited moderately lower disease levels and substantially higher SA levels. Expression of the JA‐responsive defensin gene PDF1 was induced in WT tomato plants treated with BGS, whereas the SA‐inducible pathogenesis‐related protein 1 acidic (PR1a) gene was up‐regulated in WT tomato plants treated with CF. These results suggest that TriV_JSB100 BGS and CF differentially induce JA and SA signalling cascades for the elicitation of Fusarium oxysporum resistance in tomato.  相似文献   

4.
In agro-ecosystems,plants are important mediators of interactions between their associated herbivorous insects and microbes,and any change in plants induced by one species may lead to cascading effects on interactions with other species.Often,such effects are regulated by phytohormones such as jasmonic acid(JA)and salicylic acid(SA).Here,we investigated the tripartite interactions among rice plants,three insect herbivores(Chilo suppressalis,Cnaphalocrocis medinalis or Nilapai-vata lugens),and the causal agent of rice blast disease,the fungus Magnaporthe oryzae.We found that pre-infestation of rice by C.suppressalis or N.lugens but not by C.medinalis conferred resistance to M.oryzae.For C.suppressalis and N.lugens,insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves.In contrast,infestation by C.medinalis increased JA levels but reduced SA levels.The exogenous application of SA but not of JA conferred resistance against M.oryzae.These results suggest that preinfestation by C suppressalis or N.lugens conferred resistance against M.oryzae by increasing SA accumulation.These findings enhance our understanding of the interactions among rice plant,insects and pathogens,and provide valuable information for developing an ecologically sound strategy for controlling rice blast.  相似文献   

5.
β‐Aminobutyric acid (BABA) pretreatment of Brassica plants protected them against the necrotrophic pathogen Alternaria brassicae. The achieved resistance level was much higher than that seen after salicylic acid (SA) and jasmonic acid (JA) pretreatments. BABA pretreatment to the leaves, 1 day before inoculation, led to an inhibition of the oxidative burst and a decrease in SA levels, but did not influence lipoxygenase activity nor cause callose deposition at the site of inoculation. Expression of two marker genes of the SA and JA pathways, namely PR1 and PDF1.2, was enhanced in response to BABA pretreatment. Our results indicate that BABA‐induced resistance is mediated through an enhanced expression of pathogenesis‐related protein genes, independent of SA and JA accumulation.  相似文献   

6.
NPR1 (a non‐expressor of pathogenesis‐related genes1) has been reported to play an important role in plant defense by regulating signaling pathways. However, little to nothing is known about its function in herbivore‐induced defense in monocot plants. Here, using suppressive substrate hybridization, we identified a NPR1 gene from rice, OsNPR1, and found that its expression levels were upregulated in response to infestation by the rice striped stem borer (SSB) Chilo suppressalis and rice leaf folder (LF) Cnaphalocrocis medinalis, and to mechanical wounding and treatment with jasmonic acid (JA) and salicylic acid (SA). Moreover, mechanical wounding induced the expression of OsNPR1 quickly, whereas herbivore infestation induced the gene more slowly. The antisense expression of OsNPR1 (as‐npr1), which reduced the expression of the gene by 50%, increased elicited levels of JA and ethylene (ET) as well as of expression of a lipoxygenase gene OsHI‐LOX and an ACC synthase gene OsACS2. The enhanced JA and ET signaling in as‐npr1 plants increased the levels of herbivore‐induced trypsin proteinase inhibitors (TrypPIs) and volatiles, and reduced the performance of SSB. Our results suggest that OsNPR1 is an early responding gene in herbivore‐induced defense and that plants can use it to activate a specific and appropriate defense response against invaders by modulating signaling pathways.  相似文献   

7.
8.
9.
Immune signaling networks must be tunable to alleviate fitness costs associated with immunity and, at the same time, robust against pathogen interferences. How these properties mechanistically emerge in plant immune signaling networks is poorly understood. Here, we discovered a molecular mechanism by which the model plant species Arabidopsis thaliana achieves robust and tunable immunity triggered by the microbe‐associated molecular pattern, flg22. Salicylic acid (SA) is a major plant immune signal molecule. Another signal molecule jasmonate (JA) induced expression of a gene essential for SA accumulation, EDS5. Paradoxically, JA inhibited expression of PAD4, a positive regulator of EDS5 expression. This incoherent type‐4 feed‐forward loop (I4‐FFL) enabled JA to mitigate SA accumulation in the intact network but to support it under perturbation of PAD4, thereby minimizing the negative impact of SA on fitness as well as conferring robust SA‐mediated immunity. We also present evidence for evolutionary conservation of these gene regulations in the family Brassicaceae. Our results highlight an I4‐FFL that simultaneously provides the immune network with robustness and tunability in A. thaliana and possibly in its relatives.  相似文献   

10.
Probenazole (PBZ; 3-allyloxy-1,2-benzisothiazole-1,1-dioxide), which is the active ingredient in Oryzemate, has been used widely in Asia to protect rice plants against the rice blast fungus Magnaporthe grisea. To study PBZ's mode of action, we analyzed its ability, as well as that of its active metabolite 1, 2-benzisothiazol-3 (2H)-one 1,1-dioxide (BIT) to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with PBZ or BIT exhibited increased expression of several pathogenesis-related genes, increased levels of total salicylic acid (SA), and enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC 3000 and the oomycete pathogen Peronospora parasitica Emco5. The role of several defense signaling hormones, such as SA, ethylene and jasmonic acid (JA), in activating resistance following PBZ or BIT treatment was analyzed using NahG transgenic plants and etr1-1 and coi1-1 mutant plants, respectively. In addition, the involvement of NPR1, a key component in the SA signaling pathway leading to defense responses, was assessed. PBZ or BIT treatment did not induce disease resistance or PR-1 expression in NahG transgenic or npr1 mutant plants, but it did activate these phenomena in etr1-1 and coi 1-1 mutant plants. Thus SA and NPR1 appear to be required for PBZ- and BIT-mediated activation of defense responses, while ethylene and JA are not. Furthermore, our data suggest that PBZ and BIT comprise a novel class of defense activators that stimulate the SA/NPR1-mediated defense signaling pathway upstream of SA.  相似文献   

11.
12.
13.
The extensively studied Arabidopsis phytoalexin deficient 4 (AtPAD4) gene plays an important role in Arabidopsis disease resistance; however, the function of its sequence ortholog in rice is unknown. Here, we show that rice OsPAD4 appears not to be the functional ortholog of AtPAD4 in host‐pathogen interactions, and that the OsPAD4 encodes a plasma membrane protein but that AtPAD4 encodes a cytoplasmic and nuclear protein. Suppression of OsPAD4 by RNA interference (RNAi) increased rice susceptibility to the biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo), which causes bacteria blight disease in local tissue. OsPAD4‐RNAi plants also show compromised wound‐induced systemic resistance to Xoo. The increased susceptibility to Xoo was associated with reduced accumulation of jasmonic acid (JA) and phytoalexin momilactone A (MOA). Exogenous application of JA complemented the phenotype of OsPAD4‐RNAi plants in response to Xoo. The following results suggest that OsPAD4 functions differently than AtPAD4 in response to pathogen infection. First, OsPAD4 plays an important role in wound‐induced systemic resistance, whereas AtPAD4 mediates systemic acquired resistance. Second, OsPAD4‐involved defense signaling against Xoo is JA‐dependent, but AtPAD4‐involved defense signaling against biotrophic pathogens is salicylic acid‐dependent. Finally, OsPAD4 is required for the accumulation of terpenoid‐type phytoalexin MOA in rice‐bacterium interactions, but AtPAD4‐mediated resistance is associated with the accumulation of indole‐type phytoalexin camalexin.  相似文献   

14.
15.
16.
We recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species. While Alternaria sp.‐infected plants displayed fewer symptoms and recovered, Fusarium spp.‐infected plants became chlorotic and frequently spontaneously wilted. Jasmonic acid (JA) and salicylic acid (SA) levels were differentially induced after Fusarium or Alternaria infection. Transgenic N. attenuata lines silenced in JA production or JA conjugation to isoleucine (JA‐Ile), but not in JA perception, were highly susceptible to infection by F. brachygibbosum Utah 4, indicating that products derived from the JA‐Ile biosynthetic pathway, but not their perception, is associated with increased Fusarium resistance. Infection assays using ov‐nahG plants which were silenced in pathogen‐induced SA accumulations revealed that SA may increase N. attenuata's resistance to Fusarium infection but not to Alternaria. Taken together, we propose that the dynamics of fungal disease symptoms among plants in native populations may be explained by a complex interplay of phytohormone responses to attack by multiple pathogens.  相似文献   

17.
18.
19.
Jasmonic acid (JA) regulates plant defenses against necrotrophic pathogens and insect herbivores. Salicylic acid (SA) and abscisic acid (ABA) can antagonize JA‐regulated defenses, thereby modulating pathogen or insect resistance. We performed a genome‐wide association (GWA) study on natural genetic variation in Arabidopsis thaliana for the effect of SA and ABA on the JA pathway. We treated 349 Arabidopsis accessions with methyl JA (MeJA), or a combination of MeJA and either SA or ABA, after which expression of the JA‐responsive marker gene PLANT DEFENSIN1.2 (PDF1.2) was quantified as a readout for GWA analysis. Both hormones antagonized MeJA‐induced PDF1.2 in the majority of the accessions but with a large variation in magnitude. GWA mapping of the SA‐ and ABA‐affected PDF1.2 expression data revealed loci associated with crosstalk. GLYI4 (encoding a glyoxalase) and ARR11 (encoding an Arabidopsis response regulator involved in cytokinin signalling) were confirmed by T‐DNA insertion mutant analysis to affect SA–JA crosstalk and resistance against the necrotroph Botrytis cinerea. In addition, At1g16310 (encoding a cation efflux family protein) was confirmed to affect ABA–JA crosstalk and susceptibility to Mamestra brassicae herbivory. Collectively, this GWA study identified novel players in JA hormone crosstalk with potential roles in the regulation of pathogen or insect resistance.  相似文献   

20.
Two benzenoid esters, methyl salicylate (MeSA) and methyl benzoate (MeBA), were detected from insect-damaged rice plants. By correlating metabolite production with gene expression analysis, five candidate genes encoding putative carboxyl methyltransferases were identified. Enzymatic assays with Escherichia coli-expressed recombinant proteins demonstrated that only one of the five candidates, OsBSMT1, has salicylic acid (SA) methyltransferase (SAMT) and benzoic acid (BA) methyltransferase (BAMT) activities for producing MeSA and MeBA, respectively. Whereas OsBSMT1 is phylogenetically relatively distant from dicot SAMTs, the three-dimensional structure of OsBSMT1, which was determined using homology-based structural modeling, is highly similar to those of characterized SAMTs. Analyses of OsBSMT1 expression in wild-type rice plants under various stress conditions indicate that the jasmonic acid (JA) signaling pathway plays a critical role in regulating the production and emission of MeSA in rice. Further analysis using transgenic rice plants overexpressing NH1, a key component of the SA signaling pathway in rice, suggests that the SA signaling pathway also plays an important role in governing OsBSMT1 expression and emission of its products, probably through a crosstalk with the JA signaling pathway. The role of the volatile products of OsBSMT1, MeSA and MeBA, in rice defense against insect herbivory is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号