首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that CXCR4‐overexpressing mesenchymal stem cells (MSCCX4) can repair heart tissue post myocardial infarction. This study aims to investigate the MSCCX4‐derived paracrine cardio‐protective signaling in the presence of myocardial infarction. Mesenchymal stem cells (MSCs) were divided into 3 groups: MSC only, MSCCX4, and CXCR4 gene‐specific siRNA‐transduced MSC. Mesenchymal stem cells were exposed to hypoxia, and then MSCs‐conditioned culture medium was incubated with neonatal and adult cardiomyocytes, respectively. Cell proliferation–regulating genes were assessed by real‐time polymerase chain reaction (RT‐PCR). In vitro: The number of cardiomyocytes undergoing DNA synthesis, cytokinesis, and mitosis was increased to a greater extent in MSCCX4 medium‐treated group than control group, while this proproliferative effect was reduced in CXCR4 gene‐specific siRNA‐transduced MSC–treated cells. Accordingly, the maximal enhancement of vascular endothelial growth factor, cyclin 2, and transforming growth factor‐β2 was observed in hypoxia‐exposed MSCCX4. In vivo: MSCs were labeled with enhanced green fluorescent protein (EGFP) and engrafted into injured myocardium in rats. The number of EGFP and CD31 positive cells in the MSCCX4 group was significantly increased than other 2 groups, associated with the reduced left ventricular (LV) fibrosis, the increased LV free wall thickness, the enhanced angiogenesis, and the improved contractile function. CXCR4 overexpression can mobilize MSCs into ischemic area, whereby these cells can promoted angiogenesis and alleviate LV remodeling via paracrine signaling mechanism.  相似文献   

2.
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF‐β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid‐cleaved GDF8 pro‐complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro‐complexes reveals a V‐shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring‐like, cross‐armed conformation of latent TGF‐β1. Surprisingly, Tolloid‐cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen–deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain–growth factor dissociation, increased exchange in regions that correspond in pro‐TGF‐β1 to the α1‐helix, latency lasso, and β1‐strand in the prodomain and to the β6′‐ and β7′‐strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain–growth factor interfaces and primes the growth factor for release from the prodomain.  相似文献   

3.
4.
Allogeneic mesenchymal stem cell (MSC) transplantation improves cardiac function, but cellular differentiation results in loss of immunoprivilege and rejection. To explore the mechanism involved in this immune rejection, we investigated the influence of interleukin‐6 (IL‐6), a factor secreted by MSCs, on immune privilege after myogenic, endothelial and smooth muscle cell differentiation induced by 5‐azacytidine, VEGF, and transforming growth factor‐β (TGF‐β), respectively. Both RT‐PCR and ELISA showed that myogenic differentiation of MSCs was associated with significant downregulation of IL‐6 expression (P < 0.01), which was also observed following endothelial (P < 0.01) and smooth muscle cell differentiation (P < 0.05), indicating that IL‐6 downregulation was dependent on differentiation but not cell phenotype. Flow cytometry demonstrated that IL‐6 downregulation as a result of myogenic differentiation was associated with increased leucocyte‐mediated cell death in an allogeneic leucocyte co‐culture study (P < 0.01). The allogeneic reactivity associated with IL‐6 downregulation was also observed following MSC differentiation to endothelial and smooth muscle cells (P < 0.01), demonstrating that leucocyte‐mediated cytotoxicity was also dependent on differentiation but not cell phenotype. Restoration of IL‐6 partially rescued the differentiated cells from leucocyte‐mediated cell death. These findings suggest that rejection of allogeneic MSCs after implantation may be because of a reduction in cellular IL‐6 levels, and restoration of IL‐6 may be a new target to retain MSC immunoprivilege.  相似文献   

5.
MicroRNAs have been appreciated in various cellular functions, including the regulation of angiogenesis. Mesenchymal-stem-cells (MSCs) transplanted to the MI heart improve cardiac function through paracrine-mediated angiogenesis. However, whether microRNAs regulate MSC induced angiogenesis remains to be clarified. Using microRNA microarray analysis, we identified a microRNA expression profile in hypoxia-treated MSCs and observed that among all dysregulated microRNAs, microRNA-377 was decreased the most significantly. We also validated that vascular endothelial growth factor (VEGF) is a target of microRNA-377 using dual-luciferase reporter assay and Western-blotting. Knockdown of endogenous microRNA-377 promoted tube formation in human umbilical vein endothelial cells. We then engineered rat MSCs with lentiviral vectors to either overexpress microRNA-377 (MSCmiR-377) or knockdown microRNA-377 (MSCAnti-377) to investigate whether microRNA-377 regulated MSC-induced myocardial angiogenesis, using MSCs infected with lentiviral empty vector to serve as controls (MSCNull). Four weeks after implantation of the microRNA-engineered MSCs into the infarcted rat hearts, the vessel density was significantly increased in MSCAnti-377-hearts, and this was accompanied by reduced fibrosis and improved myocardial function as compared to controls. Adverse effects were observed in MSCmiR-377-treated hearts, including reduced vessel density, impaired myocardial function, and increased fibrosis in comparison with MSCNull-group. These findings indicate that hypoxia-responsive microRNA-377 directly targets VEGF in MSCs, and knockdown of endogenous microRNA-377 promotes MSC-induced angiogenesis in the infarcted myocardium. Thus, microRNA-377 may serve as a novel therapeutic target for stem cell-based treatment of ischemic heart disease.  相似文献   

6.
Human hepatic stellate cells (HHSCs) proliferation and migration play a key role in the pathogenesis of liver inflammation and fibrogenesis. Low density lipoprotein receptor‐related protein (LRP1) is an endocytic receptor involved in intracellular signal transduction. The aim of this work was to analyse the role of low density lipoprotein receptor‐related protein (LRP1) in HHSCs proliferation and migration and the mechanisms involved. Human LRP1 deficient‐HHSCs were generated by nucleofecting the line HHSCs with siRNA anti‐LRP1. HHSCs DNA synthesis was measured by [3H]‐thymidine incorporation and cell cycle progression by flow cytometry after annexin V and iodure propidium staining. Cell migration was assessed using a wound repair model system. LRP1 expression and extracellular matrix‐regulated kinase (ERK1,2) phosphorylation were analysed by Western blot analysis. Transforming growth factor‐β (TGF‐β) extracellular levels were analysed by ELISA. siRNA‐antiLRP1 treatment almost completely inhibited LRP1 mRNA and protein expression. LRP1 deficient HHSCs showed higher proliferative response (172 ± 19 vs. 93 ± 8 [3H]‐thymidine incorporation; 78.68% vs. 82.69% in G0/G1, 21.32% vs. 17.30% in G2/S) and higher migration rates than control HHSCs. LRP1 deficient cells showed higher levels of phosphorylated ERK1,2. TGF‐β extracellular levels were threefold higher in LRP1‐deficient than in control HHSCs cells. These results demonstrate that LRP1 regulates HHSCs proliferation and migration through modulation of ERK1,2 phosphorylation and TGF‐β extracellular levels. These results suggest that HHSCs‐LRP1 may play a key role in the modulation of factors determining hepatic fibrosis. J. Cell. Physiol. 227: 3528–3533, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD.  相似文献   

8.
Common in vitro protocols for chondrogenesis of mesenchymal stem cells (MSCs) induce an inadequate, hypertrophic differentiation cascade reminiscent of endochondral bone formation. We aimed to modify chondrogenic protocols in order to identify potent inducers, promotors, and inhibitors to achieve better chondrogenesis. Nine factors suspected to stimulate or inhibit chondrogenesis were used for chondrogenic in vitro induction of MSC. Differentiation was assessed by immunohistochemistry, alcian‐blue staining, qRT‐PCR, and quantification of alkaline phosphatase (ALP) activity. Pre‐differentiated pellets were transplanted subcutaneously into SCID mice to investigate stable cartilage formation. Transforming growth factor (TGF)‐β was always required for chondrogenic differentiation and deposition of a collagen‐type‐II‐positive extracellular matrix, while bone morphogenetic protein (BMP)‐2, ‐4, ‐6, ‐7, aFGF, and IGF‐I (10 ng/ml) were alone not sufficiently inductive. Each of these factors allowed differentiation in combination with TGF‐β, however, without preventing collagen type X expression. bFGF or parathyroid hormone‐like peptide (PTHrP) inhibited the TGF‐β‐responsive COL2A1 and COL10A1 expression and ALP induction when added from day 0 or 21. In line with a reversible ALP inhibition, in vivo calcification of pellets was not prevented. Late up‐regulation of PTH1R mRNA suggests that early PTHrP effects may be mediated by a receptor‐independent pathway. While TGF‐β was a full inducer, bFGF and PTHrP were potent inhibitors for early and late chondrogenesis, seemed to induce a shift from matrix anabolism to catabolism, but did not selectively suppress COL10A1 expression. Within a developmental window of collagen type II+/collagen type X? cells, bFGF and PTHrP may allow inhibition of further differentiation toward hypertrophy to obtain stable chondrocytes for transplantation purposes. J. Cell. Physiol. 223: 84–93, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
We investigated the effect of Wnt11 on mitochondrial membrane integrity in cardiomyocytes (CMs) and the underlying mechanism of Wnt11-mediated CM protection against hypoxic injury. A rat mesenchymal stem cell (MSC) line that overexpresses Wnt11 (MSCWnt11) and a control cell line transduced with empty vector (MSCNull) were established to determine the cardioprotective role of Wnt11 in response to hypoxia. Mitochondrial membrane integrity in MSCWnt11 cells was assessed using fluorescence assays. The role of paracrine signaling mediated by vascular endothelial growth factor (VEGF), basic fibroblast growth factor (b-FGF), and insulin-like growth factor 1 (IGF-1) in protecting CMs against hypoxia were investigated using cocultures of primary CMs from neonatal rats with conditioned medium (CdM) from MSCWnt11. MSCWnt11 cells exposed to hypoxia reduced lactate dehydrogenase release from CMs and increased CM survival under hypoxia. In addition, CMs cocultured with CdM that were exposed to hypoxia showed reduced CM apoptosis and necrosis. There was significantly higher VEGF and IGF-1 release in the MSCWnt11 group compared with the MSCNull group, and the addition of anti-VEGF and anti-IGF-1 antibodies inhibited secretion. Moreover, mitochondrial membrane integrity was maintained in the MSCWnt11 cell line. In conclusion, overexpression of Wnt11 in MSCs promotes IGF-1 and VEGF release, thereby protecting CMs against hypoxia.  相似文献   

10.
11.
Growth differentiation factor 11 (GDF11) is a TGF‐β superfamily circulating factor that regulates cardiomyocyte size in rodents, sharing 90% amino acid sequence identity in the active domains with myostatin (GDF8)—the major determinant of skeletal muscle mass. Conflicting data on age‐related changes in circulating levels have been reported mainly due to the lack of specific detection methods. More recently, liquid chromatography tandem mass spectrometry (LC‐MS/MS) based assay showed that the circulating levels of GDF11 do not change significantly throughout human lifespan, but GDF8 levels decrease with aging in men. Here a novel detection method is demonstrated based on parallel reaction monitoring LC‐MS/MS assay combined with immunoprecipitation to reliably distinguish GDF11 and GDF8 as well as determine their endogenous levels in mouse serum. The data indicate that both GDF11 and GDF8 circulating levels significantly decline with aging in female mice.  相似文献   

12.
13.
14.
VEGF (vascular endothelial growth factor) is a potent proangiogenic cytokine, and vascular change is one of the characteristic features of airway remodelling. Since the glucocorticoids have shown antifibrosis properties, we sought to investigate whether budesonide, a widely used glucocorticoid in clinical practice, could attenuate TGF‐β1 (transforming growth factor‐β1)‐induced VEGF production by HFL‐1 (human lung fibroblasts). HFL‐1 fibroblasts were treated with various concentrations of budesonide (10?11 M, 10?9 M and 10?7 M) in the absence or presence of TGF‐β1. Postculture media were collected for ELISA of VEGF at the indicated times. The cell lysates were subjected to Western blotting analysis to test TGF‐β1/Smad and MAP (mitogen‐activated protein) kinase signalling activation, respectively. The results suggested that budesonide pretreatment reduced the significant increase of VEGF release induced by TGF‐β1 in HFL‐1 fibroblasts in a dose‐dependent manner, and suppressed the increase of phospho‐Smad3 and phosphor‐ERK (extracellular signal‐regulated kinase) protein levels. In conclusion, budesonide may reduce TGF‐β1‐induced VEGF production in the lung, probably through the Smad/ERK signalling pathway and, thus, may provide new sight into the molecular mechanism underlying glucocorticoid therapy for airway inflammatory diseases.  相似文献   

15.

Introduction

Currently, there is huge research focus on the development of novel cell-based regeneration and tissue-engineering therapies for the treatment of intervertebral disc degeneration and the associated back pain. Both bone marrow-derived (BM) mesenchymal stem cells (MSCs) and adipose-derived MSCs (AD-MSCs) are proposed as suitable cells for such therapies. However, currently no consensus exists as to the optimum growth factor needed to drive differentiation to a nucleus pulposus (NP)-like phenotype. The aim of this study was to investigate the effect of growth differentiation factor-6 (GDF6), compared with other transforming growth factor (TGF) superfamily members, on discogenic differentiation of MSCs, the matrix composition, and micromechanics of engineered NP tissue constructs.

Methods

Patient-matched human AD-MSCs and BM-MSCs were seeded into type I collagen hydrogels and cultured in differentiating media supplemented with TGF-β3, GDF5, or GDF6. After 14 days, quantitative polymerase chain reaction analysis of chondrogenic and novel NP marker genes and sulfated glycosaminoglycan (sGAG) content of the construct and media components were measured. Additionally, construct micromechanics were analyzed by using scanning acoustic microscopy (SAM).

Results

GDF6 stimulation of BM-MSCs and AD-MSCs resulted in a significant increase in expression of novel NP marker genes, a higher aggrecan-to-type II collagen gene expression ratio, and higher sGAG production compared with TGF-β or GDF5 stimulation. These effects were greater in AD-MSCs than in BM-MSCs. Furthermore, the acoustic-wave speed measured by using SAM, and therefore tissue stiffness, was lowest in GDF6-stiumlated AD-MSC constructs.

Conclusions

The data suggest that GDF6 stimulation of AD-MSCs induces differentiation to an NP-like phenotype and results in a more proteoglycan-rich matrix. Micromechanical analysis shows that the GDF6-treated AD-MSCs have a less-stiff matrix composition, suggesting that the growth factor is inducing a matrix that is more akin to the native NP-like tissue. Thus, this cell and growth-factor combination may be the ideal choice for cell-based intervertebral disc (IVD)-regeneration therapies.  相似文献   

16.
We investigated the mechanism underlying the inhibitory effect of rat mesenchymal stem cells (MSCs) on non‐specific mitogen‐stimulated lymphocytes (LCs) and lymphoblasts (LBs). We used MSCs of passages 2–8 prepared from Sprague–Dawley (SD) rats. LCs were isolated from the spleens of SD rats. Mixed LCs reactions of mitomycin C‐treated MSCs with concanavalin A (ConA)‐stimulated LCs or LBs were performed, and the proliferation inhibition effect was tested by MTS assay. The cytotoxicity of MSCs against naïve and ConA‐stimulated LBs was detected, after co‐culturing for 24 h, by lactate dehydrogenase release assay. The rate of apoptosis of ConA‐stimulated LBs was measured by flow cytometry after incubation with MSCs for 9 h in the ratio 10:1. The MSCs were treated with Fas ligand (FasL), transforming growth factor (TGF)‐β, and interleukin (IL)‐10 blocking antibodies and co‐cultured with ConA‐stimulated LBs to observe the apoptosis and growth inhibitory effect. The main outcomes were bone marrow‐derived adherent CD29+, CD44+, CD45, CD54+, CD95+, and SH‐2+ MSCs. FasL, TGF‐β, and IL‐10 production by MSCs were visualized by immunocytochemical analysis. MSCs exhibited a dose‐dependent growth inhibitory effect on ConA‐stimulated LCs and LBs. When treated with anti‐FasL and anti‐IL‐10 blocking antibodies, the inhibitory effect of MSCs on LBs proliferation, and the effect of apoptosis induction on LBs decreased. Anti‐TGF‐β blocking antibody treatment did not significantly influence MSCs. Therefore, the inhibitory effects of MSCs against activated LBs were significantly stronger than that against naïve LCs. FasL and IL‐10, rather than TGF‐β, play important roles in the immunosuppressive effects of MSCs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Members of the transforming growth factor (TGF)‐β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF‐β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF‐β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF‐β1 under a tetracycline regulatable Ca‐Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF‐β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF‐β1 signalling in adult NPCs. The results demonstrate that TGF‐β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF‐β1 in ageing and neurodegenerative diseases, TGF‐β1 signalling presents a molecular target for future interventions in such conditions.  相似文献   

18.
Translational studies have explored the therapeutic effects of stem cells, raising hopes for the treatment of numerous diseases. Here, we evaluated the therapeutic effect of chorionic plate‐derived mesenchymal stem cells (CP‐MSCs) isolated from human placenta and transplanted into rats with carbon tetrachloride (CCl4)‐injured livers. CP‐MSCs were analyzed for hepatocyte‐specific gene expression, indocyanine green (ICG) uptake, glycogen storage, and urea production following hepatogenic differentiation. PKH26‐labeled CP‐MSCs were directly transplanted into the livers of rats that had been exposed to CCl4 (1.6 g/kg, twice per week for 9 weeks). Blood and liver tissue were analyzed at 1, 2, and 3 weeks post‐transplantation. The expression of type I collagen (Col I) and matrix metalloproteinases (MMPs) was analyzed in rat T‐HSC/Cl‐6 hepatic stellate cells co‐cultured with CP‐MSCs following exposure to TGF‐β. The expression levels of α‐smooth muscle actin (α‐SMA) and Col I were lower in transplanted (TP) rats than in non‐transplanted (Non‐TP) animals (P < 0.05), whereas the expression levels of albumin and MMP‐9 were increased. TP rats exhibited significantly higher uptake/excretion of ICG than non‐TP rats (P < 0.005). In addition, collagen synthesis in T‐HSC/Cl‐6 cells exposed to TGF‐β was decreased by co‐culture with CP‐MSCs, which triggered the activation of MMP‐2 and MMP‐9. These results contribute to our understanding of the potential pathophysiological roles of CP‐MSCs, including anti‐fibrotic effects in liver disease, and provide a foundation for the development of new cell therapy‐based strategies for the treatment of difficult‐to‐treat liver diseases. J. Cell. Biochem. 111: 1453–1463, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Indoleamine 2,3‐dioxygenase (IDO1), a tryptophan catabolizing enzyme, is recognized as an authentic regulator of immunity in several physiopathologic conditions. We have recently demonstrated that IDO1 does not merely degrade tryptophan and produce immunoregulatory kynurenines, but it also acts as a signal‐transducing molecule, independently of its enzymic function. IDO1 signalling activity is triggered in plasmacytoid dendritic cells (pDCs) by transforming growth factor‐β (TGF‐β), an event that requires the non‐canonical NF‐κB pathway and induces long‐lasting IDO1 expression and autocrine TGF‐β production in a positive feedback loop, thus sustaining a stably regulatory phenotype in pDCs. IDO1 expression and catalytic function are defective in pDCs from non‐obese diabetic (NOD) mice, a prototypic model of autoimmune diabetes. In the present study, we found that TGF‐β failed to activate IDO1 signalling function as well as up‐regulate IDO1 expression in NOD pDCs. Moreover, TGF‐β‐treated pDCs failed to exert immunosuppressive properties in vivo. Nevertheless, transfection of NOD pDCs with Ido1 prior to TGF‐β treatment resulted in activation of the Ido1 promoter and induction of non‐canonical NF‐κB and TGF‐β, as well as decreased production of the pro‐inflammatory cytokines, interleukin 6 (IL‐6) and tumour necrosis factor‐α (TNF‐α). Overexpression of IDO1 in TGF‐β‐treated NOD pDCs also resulted in pDC ability to suppress the in vivo presentation of a pancreatic β‐cell auto‐antigen. Thus, our data suggest that a correction of IDO1 expression may restore its dual function and thus represent a proper therapeutic manoeuvre in this autoimmune setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号