首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Landscape genomics is an emerging research field that aims to identify the environmental factors that shape adaptive genetic variation and the gene variants that drive local adaptation. Its development has been facilitated by next‐generation sequencing, which allows for screening thousands to millions of single nucleotide polymorphisms in many individuals and populations at reasonable costs. In parallel, data sets describing environmental factors have greatly improved and increasingly become publicly accessible. Accordingly, numerous analytical methods for environmental association studies have been developed. Environmental association analysis identifies genetic variants associated with particular environmental factors and has the potential to uncover adaptive patterns that are not discovered by traditional tests for the detection of outlier loci based on population genetic differentiation. We review methods for conducting environmental association analysis including categorical tests, logistic regressions, matrix correlations, general linear models and mixed effects models. We discuss the advantages and disadvantages of different approaches, provide a list of dedicated software packages and their specific properties, and stress the importance of incorporating neutral genetic structure in the analysis. We also touch on additional important aspects such as sampling design, environmental data preparation, pooled and reduced‐representation sequencing, candidate‐gene approaches, linearity of allele–environment associations and the combination of environmental association analyses with traditional outlier detection tests. We conclude by summarizing expected future directions in the field, such as the extension of statistical approaches, environmental association analysis for ecological gene annotation, and the need for replication and post hoc validation studies.  相似文献   

2.
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad‐scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.  相似文献   

3.
Characterization of energy flow in ecosystems is one of the primary goals of ecology, and the analysis of trophic interactions and food web dynamics is key to quantifying energy flow. Predator‐prey interactions define the majority of trophic interactions and food web dynamics, and visual analysis of stomach, gut or fecal content composition is the technique traditionally used to quantify predator‐prey interactions. Unfortunately such techniques may be biased and inaccurate due to variation in digestion rates ( Sheppard & Hardwood 2005 ); however, those limitations can be largely overcome with new technology. In the last 20 years, the use of molecular genetic techniques in ecology has exploded ( King et al. 2008 ). The growing availability of molecular genetic methods and data has fostered the use of PCR‐based techniques to accurately distinguish and identify prey items in stomach, gut and fecal samples. In this month’s issue of Molecular Ecology Resources, Corse et al. (2010) describe and apply a new approach to quantifying predator‐prey relationships using an ecosystem‐level genetic characterization of available and consumed prey in European freshwater habitats ( Fig. 1a ). In this issue of Molecular Ecology, Hardy et al. (2010) marry the molecular genetic analysis of prey with a stable isotope (SI) analysis of trophic interactions in an Australian reservoir community ( Fig. 1b ). Both papers demonstrate novel and innovative approaches to an old problem – how do we effectively explore food webs and energy movement in ecosystems?
Figure 1 Open in figure viewer PowerPoint The aquatic habitats used for two studies of diet and trophic interactions that employed molecular genetic and stable isotope analyses. Panel a: Example of Rhone basin habitat (France) where fish diet was determined using PCR to classify prey to a series of ecological clades (photo by Emmanuel Corse). Panel b: A weir pool on the lower Murray River (Australia) where food web and prey use was evaluated using a combination of advanced molecular genetic and stable isotope analyses (photo credit: CSIRO).  相似文献   

4.
当前,人们对自然景观提供的生态系统服务保护意识正在加强,但将生态系统服务价值纳入生态风险管控的研究和实践相对较少.本研究以子午岭区为例,基于2.5 km×2.5 km的评价小区,开展了 1980、1990、2000、2010和2017年黄土高原林区——子午岭区景观格局类型格网化和重采样,定量评价了生态系统服务价值和景观...  相似文献   

5.
The central–marginal hypothesis (CMH) predicts that population size, genetic diversity and genetic connectivity are highest at the core and decrease near the edges of species' geographic distributions. We provide a test of the CMH using three replicated core‐to‐edge transects that encompass nearly the entire geographic range of the endemic streamside salamander (Ambystoma barbouri). We confirmed that the mapped core of the distribution was the most suitable habitat using ecological niche modelling (ENM) and via genetic estimates of effective population sizes. As predicted by the CMH, we found statistical support for decreased genetic diversity, effective population size and genetic connectivity from core to edge in western and northern transects, yet not along a southern transect. Based on our niche model, habitat suitability is lower towards the southern range edge, presumably leading to conflicting core‐to‐edge genetic patterns. These results suggest that multiple processes may influence a species' distribution based on the heterogeneity of habitat across a species' range and that replicated sampling may be needed to accurately test the CMH. Our work also emphasizes the importance of identifying the geographic range core with methods other than using the Euclidean centre on a map, which may help to explain discrepancies among other empirical tests of the CMH. Assessing core‐to‐edge population genetic patterns across an entire species' range accompanied with ENM can inform our general understanding of the mechanisms leading to species' geographic range limits.  相似文献   

6.
7.
The developmental origin of phenotypic plasticity in morphological shape can be attributed to environment-specific changes in growth of overall body size, localized growth of a morphological structure or a combination of both. I monitored morphological development in the first four nymphal instars of grasshoppers (Melanoplus femurrubrum) raised on two different plant diets to determine the ontogenetic origins of diet-induced phenotypic plasticity and to quantify genetic variation for phenotypic plasticity. I measured diet-induced phenotypic plasticity in body size (tibia length), head size (articular width and mandible depth) and head shape (residual articular width and residual mandible depth) for grasshoppers from 37 full-sib families raised on either a hard plant diet (Lolium perenne) or a soft plant diet (Trifolium repens). By the second to third nymphal instar, grasshoppers raised on a hard plant diet had significantly smaller mean tibia length and greater mean residual articular width (distance between mandibles adjusted for body size) compared with full-sibs raised on a soft plant diet. However, there was no significant phenotypic plasticity in mean unadjusted articular width and mandible depth, and in mean residual mandible depth. At the population level, development of diet-induced phenotypic plasticity in grasshopper head shape is mediated by plastic changes in allocation to tissue growth that maintain growth of head size on hard, low-nutrient diets while reducing growth of body size. Within the population, there was substantial variation in the plasticity of growth trajectories since different full-sib families developed phenotypic plasticity of residual articular width through different combinations of head and body size growth. Genetic variation for diet-induced phenotypic plasticity of residual articular width, residual mandible depth and tibia length, as estimated by genotype–environment interaction, exhibited significant fluctuation through ontogeny (repeated measures MANOVA , family × plant × instar, P < 0.01). For example, there was significant genetic variation for phenotypic plasticity of residual articular width in the third nymphal instar, but not earlier or later in ontogeny. The observed patterns of genetic variation are discussed with reference to short-term constraints and the evolution of phenotypic plasticity.  相似文献   

8.
T Igawa  S Oumi  S Katsuren  M Sumida 《Heredity》2013,110(1):46-56
Isolation by distance and landscape connectivity are fundamental factors underlying speciation and evolution. To understand how landscapes affect gene flow and shape population structures, island species provide intrinsic study objects. We investigated the effects of landscapes on the population structure of the endangered frog species, Odorrana ishikawae and O. splendida, which each inhabit an island in southwest Japan. This was done by examining population structure, gene flow and demographic history of each species by analyzing 12 microsatellite loci and exploring causal environmental factors through ecological niche modeling (ENM) and the cost-distance approach. Our results revealed that the limited gene flow and multiple-population structure in O. splendida and the single-population structure in O. ishikawae were maintained after divergence of the species through ancient vicariance between islands. We found that genetic distance correlated with geographic distance between populations of both species. Our landscape genetic analysis revealed that the connectivity of suitable habitats influences gene flow and leads to the formation of specific population structures. In particular, different degrees of topographical complexity between islands are the major determining factor for shaping contrasting population structures of two species. In conclusion, our results illustrate the diversification mechanism of organisms through the interaction with space and environment. Our results also present an ENM approach for identifying the key factors affecting demographic history and population structures of target species, especially endangered species.  相似文献   

9.
As the field of phylogeography has matured, it has become clear that analyses of one or a few genes may reveal more about the history of those genes than the populations and species that are the targets of study. To alleviate these concerns, the discipline has moved towards larger analyses of more individuals and more genes, although little attention has been paid to the qualitative or quantitative gains that such increases in scale and scope may yield. Here, we increase the number of individuals and markers by an order of magnitude over previously published work to comprehensively assess the phylogeographical history of a well‐studied declining species, the western pond turtle (Emys marmorata). We present a new analysis of 89 independent nuclear SNP markers and one mitochondrial gene sequence scored for rangewide sampling of >900 individuals, and compare these to smaller‐scale, rangewide genetic and morphological analyses. Our enlarged SNP data fundamentally revise our understanding of evolutionary history for this lineage. Our results indicate that the gains from greatly increasing both the number of markers and individuals are substantial and worth the effort, particularly for species of high conservation concern such as the pond turtle, where accurate assessments of population history are a prerequisite for effective management.  相似文献   

10.

Aim

Research on population genetic patterns and potential distribution dynamics can provide insights into the development of pest management strategies. Herein, we integrated population genetic analyses with the climatic niche approach to investigate spatial population genetic variations and potential geographical distribution (PGD) of the herbivorous pest Phytomyza horticola. We also analysed its population response patterns to both late Pleistocene climatic events and future climate change.

Location

China.

Methods

We analysed the patterns of genetic diversity distribution in 29 populations from 19 regions across China using three mitochondrial (COI, COII and Cytb) genes as markers. We estimated demographic histories using neutrality tests, mismatch distributions and Bayesian skyline plots. Changes in PGD were assessed using an ecological niche model.

Results

High genetic diversity was found in most populations, and the northern population exhibited higher haplotype diversity. The population genetic structure included the Tibet lineage and a large lineage comprising the remaining populations. Demographic analyses indicated that rapid population expansion occurred during the cold Last Glacial Maximum. In addition, our projections suggested that P. horticola currently has a vast PGD in China, for which the human influence index was the strongest variable. Large areas of cold northern regions were highly suitable for its survival. Under future global warming, highly suitable habitats will shift towards the higher latitudes.

Main conclusions

P. horticola is widely distributed across varied environments, which may be attributed to its high degree of genetic variation. Human activities likely facilitated the current PGD and the frequent gene flow that homogenized differentiation among most populations. In addition, P. horticola exhibits strong adaptability to cold climates and environments from the past to the future. Considering future climatic changes, prevention and control should focus on high-latitude regions, and vigilance regarding human-mediated pest dispersals and outbreaks should be maintained.  相似文献   

11.
12.
Populations residing near species' low‐latitude range margins (LLMs) often occur in warmer and drier environments than those in the core range. Thus, their genetic composition could be shaped by climatic drivers that differ from those occurring at higher latitudes, resulting in potentially adaptive variants of conservation value. Such variants could facilitate the adaptation of populations from other portions of the geographical range to similar future conditions anticipated under ongoing climate change. However, very few studies have assessed standing genetic variation at potentially adaptive loci in natural LLM populations. We investigated standing genetic variation at single nucleotide polymorphisms (SNPs) located within 117 candidate genes and its links to putative climatic selection pressures across 19 pedunculate oak (Quercus robur L.) populations distributed along a regional climatic gradient near the species' southern range margin in southeastern Europe. These populations are restricted to floodplain forests along large lowland rivers, whose hydric regime is undergoing significant shifts under modern rapid climate change. The populations showed very weak geographical structure, suggesting extensive genetic connectivity and gene flow or shared ancestry. We identified eight (6.2%) positive FST‐outlier loci, and genotype–environment association analyses revealed consistent associations between SNP allele frequencies and several climatic variables linked to water availability. A total of 61 associations involving 37 SNPs (28.5%) from 35 annotated genes provided important insights into putative functional mechanisms in our system. Our findings provide empirical support for the role of LLM populations as sources of potentially adaptive variation that could enhance species’ resilience to climate change‐related pressures.  相似文献   

13.
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution.  相似文献   

14.
Bolfíková B  Hulva P 《Heredity》2012,108(3):248-255
We used the mitochondrial control region and nuclear microsatellites to assess the distribution patterns, population structure, demography and landscape genetics for the hedgehogs Erinaceus europaeus and Erinaceus roumanicus in a transect of the mid-European zone of sympatry. E. roumanicus was less frequent and restricted to regions with lower altitudes. Demographic analyses suggested recent population growth in this species. A comparison of patterns in the spatial variability of mitochondrial and nuclear DNA indicated less sex-biased dispersal and higher levels of gene flow in E. roumanicus. No evidence of recent hybridisation or introgression was detected. We interpreted these results by comparing with phylogeographic and palaeontological studies as well as with the occurrence of hybridisation in the Russian contact zone. We propose that Central Europe was colonised by E. roumanicus by the beginning of the Neolithic period and that there was a subsequent reinforcement stage as well as the formation of a zone of sympatry after the complete reproductive isolation of both species.  相似文献   

15.
New Guinea is a topographically and biogeographically complex region that supports unique endemic fauna. Studies describing the population connectivity of species through this region are scarce. We present a population and landscape genetic study on the endemic malaria‐transmitting mosquito, Anopheles koliensis (Owen). Using mitochondrial and nuclear sequence data, as well as microsatellites, we show the evidence of geographically discrete population structure within Papua New Guinea (PNG). We also confirm the existence of three rDNA ITS2 genotypes within this mosquito and assess reproductive isolation between individuals carrying different genotypes. Microsatellites reveal the clearest population structure and show four clear population units. Microsatellite markers also reveal probable reproductive isolation between sympatric populations in northern PNG with different ITS2 genotypes, suggesting that these populations may represent distinct cryptic species. Excluding individuals belonging to the newly identified putative cryptic species (ITS2 genotype 3), we modeled the genetic differences between A. koliensis populations through PNG as a function of terrain and find that dispersal is most likely along routes with low topographic relief. Overall, these results show that A. koliensis is made up of geographically and genetically discrete populations in Papua New Guinea with landscape topography being important in restricting dispersal.  相似文献   

16.
Dendritic metapopulations have been attributed unique properties by in silico studies, including an elevated genetic diversity relative to a panmictic population of equal total size. These predictions have not been rigorously tested in nature, nor has there been full consideration of the interacting effects among contemporary landscape features, colonization history and life history traits of the target species. We tested for the effects of dendritic structure as well as the relative importance of life history, environmental barriers and historical colonization on the neutral genetic structure of a longnose sucker (Catostomus catostomus) metapopulation in the Kogaluk watershed of northern Labrador, Canada. Samples were collected from eight lakes, genotyped with 17 microsatellites, and aged using opercula. Lakes varied in differentiation, historical and contemporary connectivity, and life history traits. Isolation by distance was detected only by removing two highly genetically differentiated lakes, suggesting a lack of migration–drift equilibrium and the lingering influence of historical factors on genetic structure. Bayesian analyses supported colonization via the Kogaluk's headwaters. The historical concentration of genetic diversity in headwaters inferred by this result was supported by high historical and contemporary effective sizes of the headwater lake, T‐Bone. Alternatively, reduced allelic richness in headwaters confirmed the dendritic structure's influence on gene flow, but this did not translate to an elevated metapopulation effective size. A lack of equilibrium and upstream migration may have dampened the effects of dendritic structure. We suggest that interacting historical and contemporary factors prevent the achievement of the idealized traits of a dendritic metapopulation in nature.  相似文献   

17.
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. 2012 ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. ( 2014 ) provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. ( 2014 ) use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. 1 ). By combining the two methods, De Kort et al. ( 2014 ) were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. ( 2014 ) provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. 2013 ).  相似文献   

18.
Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co‐occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems.  相似文献   

19.
The literature on the response of insect species to the changing environments experienced along altitudinal gradients is diverse and widely dispersed. There is a growing awareness that such responses may serve as analogues for climate warming effects occurring at a particular fixed altitude or latitude over time. This review seeks, therefore, to synthesise information on the responses of insects and allied groups to increasing altitude and provide a platform for future research. It focuses on those functional aspects of insect biology that show positive or negative reaction to altitudinal changes but avoids emphasising adaptation to high altitude per se. Reactions can be direct, with insect characteristics or performance responding to changing environmental parameters, or they can be indirect and mediated through the insect's interaction with other organisms. These organisms include the host plant in the case of herbivorous insects, and also competitor species, specific parasitoids, predators and pathogens. The manner in which these various factors individually and collectively influence the morphology, behaviour, ecophysiology, growth and development, survival, reproduction, and spatial distribution of insect species is considered in detail. Resultant patterns in the abundance of individual species populations and of community species richness are examined. Attempts are made throughout to provide mechanistic explanations of trends and to place each topic, where appropriate, into the broader theoretical context by appropriate reference to key literature. The paper concludes by considering how montane insect species will respond to climate warming.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号