首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Bladder cancer (BLCA) is one of the most common urological cancer with increasing cases and deaths every year. In the present study, we aim to construct an immune-related prognostic lncRNA signature (IRPLS) in bladder cancer (BLCA) patients and explore its immunogenomic implications in pan-cancers. First, the immune-related differentially expressed lncRNAs (IRDELs) were identified by ‘limma’ R package and the score of IRPLS in every patient were evaluated by Cox regression. The dysregulation of IRDELs expression between cancer and para-cancer normal tissues was validated through RT-qPCR. Then, we further explore the biological functions of a novel lncRNA from IRPLS, RP11-89 in BLCA using CCK8 assay, Transwell assay and Apoptosis analysis, which indicated that RP11-89 was able to promote cell proliferation and invasive capacity while inhibits cell apoptosis in BLCA. In addition, we performed bioinformatic methods and RIP to investigate and validate the RP11-89/miR-27a-3p/PPARγ pathway in order to explore the mechanism. Next, CIBERSORT and ESTIMATE algorithm were used to evaluate abundance of tumour-infiltrating immune cells and scores of tumour environment elements in BLCA with different level of IRPLS risk scores. Finally, multiple bioinformatic methods were performed to show us the immune landscape of these four lncRNAs for pan-cancers. In conclusion, this study first constructed an immune-related prognostic lncRNA signature, which consists of RP11-89, PSORS1C3, LINC02672 and MIR100HG and might shed lights on novel targets for individualized immunotherapy for BLCA patients.  相似文献   

2.
《Genomics》2021,113(3):1203-1218
Bladder cancer (BLCA) has a high incidence and recurrence rate, and the effect of immunotherapy varies from person to person. Immune-related genes (IRGs) have been shown to be associated with immunotherapy and prognosis in many other cancers, but their role in immunogenic BLCA is less well defined. In this study, we constructed an eight-IRG risk model, which demonstrated strong prognostic and immunotherapeutic predictive power. The signature was significantly related to tumor clinicopathological characteristics, tumor class, immune cell infiltration and mutation status. Additionally, a nomogram containing the risk score and other potential risk factors could effectively predict the long-term overall survival probability of BLCA patients. The enriched mechanisms identified by gene set enrichment analysis suggested that the reason why this signature can accurately distinguish high- and low-risk populations may be closely related to the different degrees of innate immune response and T cell activation in different patients.  相似文献   

3.
The role of cancer‐associated fibroblasts (CAFs) has been thoroughly investigated in tumour microenvironments but not in bladder urothelial carcinoma (BLCA). The cell fraction of CAFs gradually increased with BLCA progression. Weighted gene co‐expression network analysis (WGCNA) revealed a specific gene expression module of CAFs that are relevant to cancer progression and survival status. Fifteen key genes of the module were consistent with a fibroblast signature in single‐cell RNA sequencing, functionally related to the extracellular matrix, and significant in survival analysis and tumour staging. A comparison of the luminal‐infiltrated versus luminal‐papillary subtypes and fibroblast versus urothelial carcinoma cell lines and immunohistochemical data analysis demonstrated that the key genes were specifically expressed in CAFs. Moreover, these genes are highly correlated with previously reported CAF markers. In summary, CAFs play a major role in the progression of BLCA, and the 15 key genes act as BLCA‐specific CAF markers and can predict CAF changes. WGCNA can, therefore, be used to sort CAF‐specific gene set in cancer tissues.  相似文献   

4.
Ovarian cancer (OV) is one of the leading causes of cancer deaths in women worldwide. Late diagnosis and heterogeneous treatment result to poor survival outcomes for patients with OV. Therefore, we aimed to develop novel biomarkers for prognosis prediction from the potential molecular mechanism of tumorigenesis. Eight eligible data sets related to OV in GEO database were integrated to identify differential expression genes (DEGs) between tumour tissues and normal. Enrichment analyses discovered DEGs were most significantly enriched in G2/M checkpoint signalling pathway. Subsequently, we constructed a multi‐gene signature based on the LASSO Cox regression model in the TCGA database and time‐dependent ROC curves showed good predictive accuracy for 1‐, 3‐ and 5‐year overall survival. Utility in various types of OV was validated through subgroup survival analysis. Risk scores formulated by the multi‐gene signature stratified patients into high‐risk and low‐risk, and the former inclined worse overall survival than the latter. By incorporating this signature with age and pathological tumour stage, a visual predictive nomogram was established, which was useful for clinicians to predict survival outcome of patients. Furthermore, SNRPD1 and EFNA5 were selected from the multi‐gene signature as simplified prognostic indicators. Higher EFNA5 expression or lower SNRPD1 indicated poorer outcome. The correlation between signature gene expression and clinical characteristics was observed through WGCNA. Drug‐gene interaction was used to identify 16 potentially targeted drugs for OV treatment. In conclusion, we established novel gene signatures as independent prognostic factors to stratify the risk of OV patients and facilitate the implementation of personalized therapies.  相似文献   

5.
Metastasis‐related mRNAs have showed great promise as prognostic biomarkers in various types of cancers. Therefore, we attempted to develop a metastasis‐associated gene signature to enhance prognostic prediction of breast cancer (BC) based on gene expression profiling. We firstly screened and identified 56 differentially expressed mRNAs by analysing BC tumour tissues with and without metastasis in the discovery cohort (GSE102484, n = 683). We then found 26 of these differentially expressed genes were associated with metastasis‐free survival (MFS) in the training set (GSE20685, n = 319). A metastasis‐associated gene signature built using a LASSO Cox regression model, which consisted of four mRNAs, can classify patients into high‐ and low‐risk groups in the training cohort. Patients with high‐risk scores in the training cohort had shorter MFS (hazard ratio [HR] 3.89, 95% CI 2.53‐5.98; P < 0.001), disease‐free survival (DFS) (HR 4.69, 2.93‐7.50; P < 0.001) and overall survival (HR 4.06, 2.56‐6.45; P < 0.001) than patients with low‐risk scores. The prognostic accuracy of mRNAs signature was validated in the two independent validation cohorts (GSE21653, n = 248; GSE31448, n = 246). We then developed a nomogram based on the mRNAs signature and clinical‐related risk factors (T stage and N stage) that predicted an individual's risk of disease, which can be assessed by calibration curves. Our study demonstrated that this 4‐mRNA signature might be a reliable and useful prognostic tool for DFS evaluation and will facilitate tailored therapy for BC patients at different risk of disease.  相似文献   

6.
Quite a few estrogen receptor (ER)‐positive breast cancer patients receiving endocrine therapy are at risk of disease recurrence and death. ER‐related genes are involved in the progression and chemoresistance of breast cancer. In this study, we identified an ER‐related gene signature that can predict the prognosis of ER‐positive breast cancer patient receiving endocrine therapy. We collected RNA expression profiling from Gene Expression Omnibus database. An ER‐related signature was developed to separate patients into high‐risk and low‐risk groups. Patients in the low‐risk group had significantly better survival than those in the high‐risk group. ROC analysis indicated that this signature exhibited good diagnostic efficiency for the 1‐, 3‐ and 5‐year disease‐relapse events. Moreover, multivariate Cox regression analysis demonstrated that the ER‐related signature was an independent risk factor when adjusting for several clinical signatures. The prognostic value of this signature was validated in the validation sets. In addition, a nomogram was built and the calibration plots analysis indicated the good performance of this nomogram. In conclusion, combining with ER status, our results demonstrated that the ER‐related prognostic signature is a promising method for predicting the prognosis of ER‐positive breast cancer patients receiving endocrine therapy.  相似文献   

7.
Lung adenocarcinoma (LUAD) is the main subtype of non-small cell lung cancer with a poor survival prognosis. In our study, gene expression, DNA methylation, and clinicopathological data of primary LUAD were utilized to identify potential prognostic markers for LUAD, which were recruited from The Cancer Genome Atlas (TCGA) database. Univariate regression analysis showed that there were 21 methylation-associated DEGs related to overall survival (OS), including 9 down- and 12 up-regulated genes. The 12 up-regulated genes with hypomethylation may be risky genes, whereas the other 9 down-regulated genes with hypermethylation might be protective genes. By using the Step-wise multivariate Cox analysis, a methylation-associated 6-gene (consisting of CCL20, F2, GNPNAT1, NT5E, B3GALT2, and VSIG2) prognostic signature was constructed and the risk score based on this gene signature classified patients into high- or low-risk groups. Patients of the high-risk group had shorter OS than those of the low-risk group in both the training and validation cohort. Multivariate Cox analysis and the stratified analysis revealed that the risk score was an independent prognostic factor for LUAD patients. The methylation-associated gene signature may serve as a prognostic factor for LUAD patients and the represent hypermethylated or hypomethylated genes might be potential targets for LUAD therapy.  相似文献   

8.
Epithelial-mesenchymal transition (EMT), a biological process involving the transformation of epithelial cells into mesenchymal cells, promotes tumour initiation and metastasis. The aim of this study was to construct an EMT molecular signature for predicting colorectal cancer (CRC) prognosis and evaluate the efficacy of the model. The risk scoring system, constructed by log-rank test and multivariate Cox regression analysis according to EMT-related gene expression in CRC patients from TCGA database, demonstrated the highest correlation with prognosis compared with other parameters in CRC patients. The risk scores were significantly correlated with more lymph node metastasis, distal metastasis and advanced clinical stage of CRC. The model was further successfully validated in two independent external cohorts from GEO database. Furthermore, we developed a nomogram to integrate the EMT signature with the pathological stage of CRC, which was found to perform well in predicting the overall survival. Additionally, this risk scoring model was found to be associated with immune cell infiltration, implying a potential role of EMT involved in immunity regulation in tumour microenvironment. Taken together, our novel EMT molecular model may be useful in identifying high-risk patients who need an intensive follow-up and more aggressive therapy, finally contributing to more precise individualized therapeutic strategies.  相似文献   

9.
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with an estimated 1.8 million new cases worldwide and associated with high mortality rates of 881 000 CRC‐related deaths in 2018. Screening programs and new therapies have only marginally improved the survival of CRC patients. Immune‐related genes (IRGs) have attracted attention in recent years as therapeutic targets. The aim of this study was to identify an immune‐related prognostic signature for CRC. To this end, we combined gene expression and clinical data from the CRC data sets of The Cancer Genome Atlas (TCGA) into an integrated immune landscape profile. We identified a total of 476 IRGs that were differentially expressed in CRC vs normal tissues, of which 18 were survival related according to univariate Cox analysis. Stepwise multivariate Cox proportional hazards analysis established an immune‐related prognostic signature consisting of SLC10A2, FGF2, CCL28, NDRG1, ESM1, UCN, UTS2 and TRDC. The predictive ability of this signature for 3‐ and 5‐year overall survival was determined using receiver operating characteristics (ROC), and the respective areas under the curve (AUC) were 79.2% and 76.6%. The signature showed moderate predictive accuracy in the validation and GSE38832 data sets as well. Furthermore, the 8‐IRG signature correlated significantly with tumour stage, invasion, lymph node metastasis and distant metastasis by univariate Cox analysis, and was established an independent prognostic factor by multivariate Cox regression analysis for CRC. Gene set enrichment analysis (GSEA) revealed a relationship between the IRG prognostic signature and various biological pathways. Focal adhesions and ECM‐receptor interactions were positively correlated with the risk scores, while cytosolic DNA sensing and metabolism‐related pathways were negatively correlated. Finally, the bioinformatics results were validated by real‐time RT?qPCR. In conclusion, we identified and validated a novel, immune‐related prognostic signature for patients with CRC, and this signature reflects the dysregulated tumour immune microenvironment and has a potential for better CRC patient management.  相似文献   

10.
Cancer immune plays a critical role in cancer progression. Tumour immunology and immunotherapy are one of the exciting areas in bladder cancer research. In this study, we aimed to develop an immune‐related gene signature to improve the prognostic prediction of bladder cancer. Firstly, we identified 392 differentially expressed immune‐related genes (IRGs) based on TCGA and ImmPort databases. Functional enrichment analysis revealed that these genes were enriched in inflammatory and immune‐related pathways, including in ‘regulation of signaling receptor activity’, ‘cytokine‐cytokine receptor interaction’ and ‘GPCR ligand binding’. Then, we separated all samples in TCGA data set into the training cohort and the testing cohort in a ratio of 3:1 randomly. Data set GSE13507 was set as the validation cohort. We constructed a prognostic six‐IRG signature with LASSO Cox regression in the training cohort, including AHNAK, OAS1, APOBEC3H, SCG2, CTSE and KIR2DS4. Six IRGs reflected the microenvironment of bladder cancer, especially immune cell infiltration. The prognostic value of six‐IRG signature was further validated in the testing cohort and the validation cohort. The results of multivariable Cox regression and subgroup analysis revealed that six‐IRG signature was a clinically independent prognostic factor for bladder cancer patients. Further, we constructed a nomogram based on six‐IRG signature and other clinicopathological risk factors, and it performed well in predict patients'' survival. Finally, we found six‐IRG signature showed significant difference in different molecular subtypes of bladder cancer. In conclusions, our research provided a novel immune‐related gene signature to estimate prognosis for patients'' survival with bladder cancer.  相似文献   

11.
12.
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.  相似文献   

13.
Lung cancer is one of the most malignant cancers worldwide, and lung adenocarcinoma (LUAD) is the most common histologic subtype. Thousands of biomarkers related to the survival and prognosis of patients with this cancer type have been investigated through database mining; however, the prediction effect of a single gene biomarker is not satisfactorily specific or sensitive. Thus, the present study aimed to develop a novel gene signature of prognostic values for patients with LUAD. Using a data-mining method, we performed expression profiling of 1145 mRNAs in large cohorts with LUAD (n = 511) from The Cancer Genome Atlas database. Using the Gene Set Enrichment Analysis, we selected 198 genes related to GLYCOLYSIS, which is the most important enrichment gene set. Moreover, these genes were identified using Cox proportional regression modeling. We established a risk score staging system to predict the outcome of patients with LUAD and subsequently identified four genes (AGRN, AKR1A1, DDIT4, and HMMR) that were closely related to the prognosis of patients with LUAD. The identified genes allowed us to classify patients into the high-risk group (with poor outcome) and low-risk group (with better outcome). Compared with other clinical factors, the risk score has a better performance in predicting the outcome of patients with LUAD, particularly in the early stage of LUAD. In conclusion, we developed a four-gene signature related to glycolysis by utilizing the Cox regression model and a risk staging model for LUAD, which might prove valuable for the clinical management of patients with LUAD.  相似文献   

14.
Despite the prognostic value of IDH and other gene mutations found in diffuse glioma, markers that judge individual prognosis of patients with diffuse lower‐grade glioma (LGG) are still lacking. This study aims to develop an expression‐based microRNA signature to provide survival and radiotherapeutic response prediction for LGG patients. MicroRNA expression profiles and relevant clinical information of LGG patients were downloaded from The Cancer Genome Atlas (TCGA; the training group) and the Chinese Glioma Genome Atlas (CGGA; the test group). Cox regression analysis, random survival forests‐variable hunting (RSFVH) screening and receiver operating characteristic (ROC) were used to identify the prognostic microRNA signature. ROC and TimeROC curves were plotted to compare the predictive ability of IDH mutation and the signature. Stratification analysis was conducted in patients with radiotherapy information. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to explore the biological function of the signature. We identified a five‐microRNA signature that can classify patients into low‐risk or high‐risk group with significantly different survival in the training and test datasets (P < 0.001). The five‐microRNA signature was proved to be superior to IDH mutation in survival prediction (AUCtraining = 0.688 vs 0.607). Stratification analysis found the signature could further divide patients after radiotherapy into two risk groups. GO and KEGG analyses revealed that microRNAs from the prognostic signature were mainly enriched in cancer‐associated pathways. The newly discovered five‐microRNA signature could predict survival and radiotherapeutic response of LGG patients based on individual microRNA expression.  相似文献   

15.
16.
Dysregulation of long noncoding RNAs (lncRNAs) has been found in a large number of human cancers, including colon cancer. Therefore, the implementation of potential lncRNAs biomarkers with prognostic prediction value are very much essential. GSE39582 data set was downloaded from database of Gene Expression Omnibus. Re-annotation analysis of lncRNA expression profiles was performed by NetAffx annotation files. Univariate and multivariate Cox proportional analyses helped select prognostic lncRNAs. Algorithm of random survival forest-variable hunting (RSF-VH) together with stepwise multivariate Cox proportional analysis were performed to establish lncRNA signature. The log-rank test was carried out to analyze and compare the Kaplan-Meier survival curves of patients’ overall survival (OS). Receiver operating characteristic (ROC) analysis was used for comparing the survival prediction regarding its specificity and sensitivity based on lncRNA risk score, followed by calculating the values of area under the curve (AUC). The single-sample GSEA (ssGSEA) analysis was used to describe biological functions associated with this signature. Finally, to determine the robustness of this model, we used the validation sets including GSE17536 and The Cancer Genome Atlas data set. After re-annotation analysis of lncRNAs, a total of 14 lncRNA probes were obtained by univariate and multivariate Cox proportional analysis. Then, the RSF-VH algorithm and stepwise multivariate Cox analysis helped to build a five-lncRNA prognostic signature for colon cancer. The patients in group with high risk showed an obviously shorter survival time compared with patients in group with low risk with AUC of 0.75. In addition, the five-lncRNA signature can be used to independently predict the survival of patients with colon cancer. The ssGSEA analysis revealed that pathways such as extracellular matrix-receptor interaction was activated with an increase in risk score. These findings determined the strong power of prognostic prediction value of this five-lncRNA signature for colon cancer.  相似文献   

17.
Overactive DNA repair contributes to therapeutic resistance in cancer. However, pan-cancer comparative studies investigating the contribution of all DNA repair genes in cancer progression employing an integrated approach have remained limited. We performed a multi-cohort retrospective analysis to determine the prognostic significance of 138 DNA repair genes in 16 cancer types (n = 16,225). Cox proportional hazards analyses revealed a significant variation in the number of prognostic genes between cancers; 81 genes were prognostic in clear cell renal cell carcinoma while only two genes were prognostic in glioblastoma. We reasoned that genes that were commonly prognostic in highly correlated cancers revealed by Spearman’s correlation analysis could be harnessed as a molecular signature for risk assessment. A 10-gene signature, uniting prognostic genes that were common in highly correlated cancers, was significantly associated with overall survival in patients with clear cell renal cell (P < 0.0001), papillary renal cell (P = 0.0007), liver (P = 0.002), lung (P = 0.028), pancreas (P = 0.00013) or endometrial (P = 0.00063) cancers. Receiver operating characteristic analyses revealed that a combined model of the 10-gene signature and tumor staging outperformed either classifier when considered alone. Multivariate Cox regression models incorporating additional clinicopathological features showed that the signature was an independent predictor of overall survival. Tumor hypoxia is associated with adverse outcomes. Consistent across all six cancers, patients with high 10-gene and high hypoxia scores had significantly higher mortality rates compared to those with low 10-gene and low hypoxia scores. Functional enrichment analyses revealed that high mortality rates in patients with high 10-gene scores were attributable to an overproliferation phenotype. Death risk in these patients was further exacerbated by concurrent mutations of a cell cycle checkpoint protein, TP53. The 10-gene signature identified tumors with heightened DNA repair ability. This information has the potential to radically change prognosis through the use of adjuvant DNA repair inhibitors with chemotherapeutic drugs.  相似文献   

18.
19.
The relationship between metabolism reprogramming and neuroblastoma (NB) is largely unknown. In this study, one RNA‐sequence data set (n = 153) was used as discovery cohort and two microarray data sets (n = 498 and n = 223) were used as validation cohorts. Differentially expressed metabolic genes were identified by comparing stage 4s and stage 4 NBs. Twelve metabolic genes were selected by LASSO regression analysis and integrated into the prognostic signature. The metabolic gene signature successfully stratifies NB patients into two risk groups and performs well in predicting survival of NB patients. The prognostic value of the metabolic gene signature is also independent with other clinical risk factors. Nine metabolism‐related long non‐coding RNAs (lncRNAs) were also identified and integrated into the metabolism‐related lncRNA signature. The lncRNA signature also performs well in predicting survival of NB patients. These results suggest that the metabolic signatures have the potential to be used for risk stratification of NB. Gene set enrichment analysis (GSEA) reveals that multiple metabolic processes (including oxidative phosphorylation and tricarboxylic acid cycle, both of which are emerging targets for cancer therapy) are enriched in the high‐risk NB group, and no metabolic process is enriched in the low‐risk NB group. This result indicates that metabolism reprogramming is associated with the progression of NB and targeting certain metabolic pathways might be a promising therapy for NB.  相似文献   

20.
Gastric cancer (GC) is one of the most fatal common cancers in worldwide. Helicobacter pylori (H. pylori) infection is closely related to the development of GC, although the mechanism is still unclear. In our study, we aim to develop a robust messenger RNA (mRNA) signature associated with H. pylori (-) GC that can sensitively and efficiently predict the prognostic. The RNA-seq expression profile and corresponding clinical data of 598 gastric cancer samples and 63 normal samples obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database. Using gene set enrichment analysis H. pylori (+) GC and H. pylori (-) GC patients and normal samples to select certain genes for further analysis. Using univariate and multivariate Cox regression model to establish a gene signature for predicting the overall survival (OS). Finally, we identified G2/M related seven-mRNA signature (TGFB1, EGF, MKI67, ILF3, INCENP, TNPO2, and CHAF1A) closely related to the prognosis of patients with H. pylori (-) GC. The seven-mRNA signature was identified to act as an independent prognostic biomarker by stratified analysis and multivariate Cox regression analysis. It was also validated on two test groups from TCGA and GSE15460 and shown that patients with high-risk scores based on the expression of the seven mRNAs had significantly shorter survival times compared to patients with low-risk scores (P < .0001). In this study, we developed a seven-mRNA signature related to G2/M checkpoint from H. pylori (-) GCs that as an independent biomarker potentially with a good performance in predicting OS and might be valuable for the clinical management for patients with GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号