首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

2.
Corticosterone plays an important role in feeding behavior. However, its mechanism remains unclear. Therefore, the present study aimed to investigate the effect of corticosterone on feeding behavior. In this study, cumulative food intake was increased by acute corticosterone administration in a dose‐dependent manner. Administration of the 5‐HT2c receptor agonist m‐chlorophenylpiperazin (mCPP) reversed the effect of corticosterone on food intake. The anorectic effects of mCPP were also blocked by the 5‐HT2c receptor antagonist RS102221 in corticosterone‐treated mice. Both corticosterone and mCPP increased c‐Fos expression in hypothalamic nuclei, but not the nucleus of the solitary tract. RS102221 inhibited c‐Fos expression induced by mCPP, but not corticosterone. In addition, mCPP had little effect on TH and POMC levels in the hypothalamus. Furthermore, mCPP antagonized decreasing effect of the leptin produced by corticosterone. Taken together, our findings suggest that 5‐HT2c receptors and leptin may be involved in the effects of corticosterone‐induced hyperphagia.  相似文献   

3.
4.
Recent studies have reinforced the view that the lateral hypothalamic area (LHA) regulates food intake and body weight. We identified leptin-sensitive neurons in the arcuate nucleus of the hypothalamus (Arc) that innervate the LHA using retrograde tracing with leptin administration. We found that retrogradely labeled cells in the Arc contained neuropeptide Y (NPY) mRNA or proopiomelanocortin (POMC) mRNA. Following leptin administration, NPY cells in the Arc did not express Fos but expressed suppressor of cytokine signaling-3 (SOCS-3) mRNA. In contrast, leptin induced both Fos and SOCS-3 expression in POMC neurons, many of which also innervated the LHA. These findings suggest that leptin directly and differentially engages NPY and POMC neurons that project to the LHA, linking circulating leptin and neurons that regulate feeding behavior and body weight homeostasis.  相似文献   

5.
6.
Consumption of a high-fat diet decreases hypothalamic neuropeptide Y (NPY) and increases proopiomelanocortin (POMC) and brown adipose uncoupling protein (UCP)-1 mRNA in obesity-resistant SWR/J but not obesity-prone C57Bl/6J mice. Although leptin was elevated in both strains in response to a high-fat diet, its role in the development of diet-induced obesity has remained unclear since insulin and other factors that affect similar tissue targets are altered. Thus, we administered recombinant leptin by subcutaneous infusion to chow-fed mice to mimic the changes in plasma leptin across its broad physiologic range. We observed strain differences in responsiveness to reduced and elevated leptin levels. A reduction in leptin during fasting evoked a greater response in C57Bl/6J mice by decreasing energy expenditure and thyroxin, increasing corticosterone and stimulating food intake and weight gain during refeeding. However, C57Bl/6J mice were less responsive to an increase in leptin in the fed state. Conversely, the leptin-mediated response to fasting was blunted in SWR/J mice, whereas an increase in leptin profoundly reduced food intake and body weight in SWR/J mice fed ad libitum. Sensitivity to fasting in C57Bl/6J mice was associated with higher hypothalamic NPY mRNA and reduced POMC and UCP-1 mRNA expression, while the robust response to high leptin levels in SWR/J mice was associated with suppression of NPY mRNA. These results indicate that differences in leptin responsiveness between strains might occur centrally or peripherally, leading to alteration in the patterns of food intake, thermogenesis and energy storage.  相似文献   

7.
下丘脑是人体的摄食中枢,它通过抑制食欲的阿黑皮素原(POMC)神经元和促进食欲的神经肽相关蛋白(AgRP)神经元调节摄食及能量代谢。叉头转录因子O亚族1(FoxO1)是胰岛素信号通路和瘦素信号通路中重要的调节蛋白,FoxO1的生理作用是促进下丘脑Agrp基因表达、抑制Pomc基因表达,抑制瘦素信号通路的转录激活因子3(STAT3)蛋白对Pomc基因转录的促进作用,从而促进食欲。瘦素和胰岛素均可激活经典的IRS/PI(3)K/Akt信号通路,使FoxO1磷酸化失去活性,抑制食欲。此外,沉默信息调节因子Sirt1也可以通过去乙酰化,影响FoxO1的转录活性。本文综述了胰岛素、瘦素、Sirt1通过FoxO1调节下丘脑摄食中枢的作用机制。  相似文献   

8.
9.
Metabolic hormones, such as leptin, alter the input organization of hypothalamic circuits, resulting in increased pro-opiomelanocortin (POMC) tone, followed by decreased food intake and adiposity. The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity. Here we report that estradiol (E2) triggers a robust increase in the number of excitatory inputs to POMC neurons in the arcuate nucleus of wild-type rats and mice. This rearrangement of synapses in the arcuate nucleus is leptin independent because it also occurred in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, and was paralleled by decreased food intake and body weight gain as well as increased energy expenditure. However, estrogen-induced decrease in body weight was dependent on Stat3 activation in the brain. These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling.  相似文献   

10.
The hypothalamus responds to circulating leptin and insulin in the control of food intake and body weight. A number of neurotransmitters in the hypothalamus, including gamma-aminobutyric acid (GABA), also have key roles in feeding. Huntingtin-associated protein 1 (Hap1) is expressed more abundantly in the hypothalamus than in other brain regions, and lack of Hap1 in mice leads to early postnatal death. Hap1 is also involved in intracellular trafficking of the GABA(A) receptor. Here, we report that fasting upregulates the expression of Hap1 in the rodent hypothalamus, whereas intracerebroventricular administration of insulin downregulates Hap1 by increasing its degradation through ubiquitination. Decreasing the expression of mouse hypothalamic Hap1 by siRNA reduces the level and activity of hypothalamic GABA(A) receptors and causes a decrease in food intake and body weight. These findings provide evidence linking hypothalamic Hap1 to GABA in the stimulation of feeding and suggest that this mechanism is involved in the feeding-inhibitory actions of insulin in the brain.  相似文献   

11.
Diabetic Akita male mice are more hyperphagic because of downregulation of proopiomelanocortin (POMC) caused by hypoleptinemia. We investigated the role of estrogen receptor α (ERα) in the regulation of the hypothalamic POMC in females. ERaKOAkt mice consumed 30% greater food (g/3 weeks) than the Akita diabetic controls. Ovariectomized diabetic (AFO) and nondiabetic (B6FO) mice had significantly lower food intake and elevated serum leptin levels. ERaKOAkt and ERaKO mice also increased serum leptin concentrations, while hypoinsulinemia was observed in ERaKOAkt and hyperinsulinemia in ERaKO mice. RT-PCR showed a significant attenuation of POMC expression in both ERaKOAkt and ERaKO mice, irrespective of the elevated leptin serum levels or hyperinsulinemia, while elevated serum leptin levels in AFO and B6FO mice upregulated POMC gene expression. These results indicate that ERα plays an essential role in leptin- and insulin-stimulated upregulation of the POMC gene. This action of ERα is likely mediated in a ligand-independent manner.  相似文献   

12.
Leptin plays a pivotal role in regulation of energy balance. Via unknown central pathways, leptin also affects peripheral glucose homeostasis and locomotor activity. We hypothesized that, specifically, pro-opiomelanocortin (POMC) neurons mediate those actions. To examine this possibility, we applied Cre-Lox technology to express leptin receptors (ObRb) exclusively in POMC neurons of the morbidly obese, profoundly diabetic, and severely hypoactive leptin receptor-deficient Leprdb/db mice. Here, we show that expression of ObRb only in POMC neurons leads to a marked decrease in energy intake and a modest reduction in body weight in Leprdb/db mice. Remarkably, blood glucose levels are entirely normalized. This normalization occurs independently of changes in food intake and body weight. In addition, physical activity is greatly increased despite profound obesity. Our results suggest that leptin signaling exclusively in POMC neurons is sufficient to stimulate locomotion and prevent diabetes in the severely hypoactive and hyperglycemic obese Leprdb/db mice.  相似文献   

13.
14.
Leptin acts via neuronal leptin receptors to control energy balance. Hypothalamic pro-opiomelanocortin (POMC) and agouti-related peptide (AgRP)/Neuropeptide Y (NPY)/GABA neurons produce anorexigenic and orexigenic neuropeptides and neurotransmitters, and express the long signaling form of the leptin receptor (LepRb). Despite progress in the understanding of LepRb signaling and function, the sub-cellular localization of LepRb in target neurons has not been determined, primarily due to lack of sensitive anti-LepRb antibodies. Here we applied light microscopy (LM), confocal-laser scanning microscopy (CLSM), and electron microscopy (EM) to investigate LepRb localization and signaling in mice expressing a HA-tagged LepRb selectively in POMC or AgRP/NPY/GABA neurons. We report that LepRb receptors exhibit a somato-dendritic expression pattern. We further show that LepRb activates STAT3 phosphorylation in neuronal fibers within several hypothalamic and hindbrain nuclei of wild-type mice and rats, and specifically in dendrites of arcuate POMC and AgRP/NPY/GABA neurons of Leprb +/+ mice and in Leprb db/db mice expressing HA-LepRb in a neuron specific manner. We did not find evidence of LepRb localization or STAT3-signaling in axon-fibers or nerve-terminals of POMC and AgRP/NPY/GABA neurons. Three-dimensional serial EM-reconstruction of dendritic segments from POMC and AgRP/NPY/GABA neurons indicates a high density of shaft synapses. In addition, we found that the leptin activates STAT3 signaling in proximity to synapses on POMC and AgRP/NPY/GABA dendritic shafts. Taken together, these data suggest that the signaling-form of the leptin receptor exhibits a somato-dendritic expression pattern in POMC and AgRP/NPY/GABA neurons. Dendritic LepRb signaling may therefore play an important role in leptin’s central effects on energy balance, possibly through modulation of synaptic activity via post-synaptic mechanisms.  相似文献   

15.
《Hormones and behavior》2010,57(5):532-538
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

16.
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

17.
A decrease in leptin levels with the onset of starvation triggers a myriad of physiological responses including immunosuppression and hypometabolism/hypothermia, both of which can counteract the fever response to pathogens. Here we examined the role of leptin in LPS-induced fever in rats that were fasted for 48 h prior to inflammation with or without leptin replacement (12 μg/day). The preinflammation fasting alone caused a progressive hypothermia that was almost completely reversed by leptin replacement. The LPS (100 μg/kg)-induced elevation in core body temperature (T(core)) was attenuated in the fasted animals at 2-6 h after the injection, an effect that was not reversed by leptin replacement. Increasing the LPS dose to 1,000 μg/kg caused a long-lasting fever that remained unabated for up to 36 h after the injection in the fed rats. This sustained response was strongly attenuated in the fasted rats whose T(core) started to decrease by 18 h after the injection. Leptin replacement almost completely restored the prolonged fever. The attenuation of the prolonged fever in the fasted animals was accompanied by the diminution of proinflammatory PGE(2) in the cerebrospinal fluid and mRNA of proopiomelanocortin (POMC) in the hypothalamus. Leptin replacement prevented the fasting-induced reduction of POMC but not PGE(2). Moreover, the leptin-dependent fever maintenance correlated closely with hypothalamic POMC levels (r = 0.77, P < 0.001). These results suggest that reduced leptin levels during starvation attenuate the sustained fever response by lowering hypothalamic POMC tone but not PGE(2) synthesis.  相似文献   

18.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

19.
Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K(+) currents. A potential K(+) current is the M-current, a noninactivating, subthreshold outward K(+) current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond to energy states, we hypothesized that fasting may alter the M-current and/or its modulation by serotonergic input to POMC neurons. Using visualized-patch recording in neurons from fed male enhanced green fluorescent protein-POMC transgenic mice, we established that POMC neurons expressed a robust M-current (102.1 ± 6.7 pA) that was antagonized by the selective KCNQ channel blocker XE-991 (40 μM). However, the XE-991-sensitive current in POMC neurons did not differ between fed and fasted states. To determine if serotonin suppresses the M-current via the 5-HT(2C) receptor, we examined the effects of the 5-HT(2A)/5-HT(2C) receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) on the M-current. Indeed, DOI attenuated the M-current by 34.5 ± 6.9% and 42.0 ± 5.3% in POMC neurons from fed and fasted male mice, respectively. In addition, the 5-HT(1B)/5-HT(2C) receptor agonist m-chlorophenylpiperazine attenuated the M-current by 42.4 ± 5.4% in POMC neurons from fed male mice. Moreover, the selective 5-HT(2C) receptor antagonist RS-102221 abrogated the actions of DOI in suppressing the M-current. Collectively, these data suggest that although M-current expression does not differ between fed and fasted states in POMC neurons, serotonin inhibits the M-current via activation of 5-HT(2C) receptors to increase POMC neuronal excitability and, subsequently, reduce food intake.  相似文献   

20.
Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号