共查询到20条相似文献,搜索用时 0 毫秒
1.
The chimeric mitochondrial gene orf182 causes non‐pollen‐type abortion in Dongxiang cytoplasmic male‐sterile rice 下载免费PDF全文
Hongwei Xie Xiaojue Peng Mingjuan Qian Yicong Cai Xia Ding Qiusheng Chen Qiying Cai Youlin Zhu Longan Yan Yaohui Cai 《The Plant journal : for cell and molecular biology》2018,95(4):715-726
2.
3.
Jiuyuan Bai Xin Wang Hao Wu Fei Ling Yun Zhao Yongjun Lin Rui Wang 《Plant biotechnology journal》2020,18(3):668-678
Bidirectional green tissue‐specific promoters have important application prospects in genetic engineering and crop genetic improvement. However, there is no report on the application of them, mainly due to undiscovered natural bidirectional green tissue‐specific promoters and the lack of a comprehensive approach for the synthesis of these promoters. In order to compensate for this vacancy, the present study reports a novel strategy for the expression regulatory sequence selection and the bidirectional green tissue‐specific synthetic promoter construction. Based on this strategy, seven promoters were synthesized and introduced into rice by agrobacterium‐mediated transformation. The functional identification of these synthetic promoters was performed by the expression pattern of GFP and GUS reporter genes in two reverse directions in transgenic rice. The results indicated that all the synthetic promoters possessed bidirectional expression activities in transgenic rice, and four synthetic promoters (BiGSSP2, BiGSSP3, BiGSSP6, BiGSSP7) showed highly bidirectional expression efficiencies specifically in green tissues (leaf, sheath, panicle, stem), which could be widely applied to agricultural biotechnology. Our study provided a feasible strategy for the construction of synthetic promoters, and we successfully created four bidirectional green tissue‐specific synthetic promoters. It is the first report on bidirectional green tissue‐specific promoters that could be efficiently applied in genetic engineering. 相似文献
4.
Identification of Arabidopsis genic and non‐genic promoters by paired‐end sequencing of TSS tags 下载免费PDF全文
Mutsutomo Tokizawa Kazutaka Kusunoki Hiroyuki Koyama Atsushi Kurotani Tetsuya Sakurai Yutaka Suzuki Tomoaki Sakamoto Tetsuya Kurata Yoshiharu Y. Yamamoto 《The Plant journal : for cell and molecular biology》2017,90(3):587-605
5.
Estimating differences in gene expression among alleles is of high interest for many areas in biology and medicine. Here, we present a user‐friendly software tool, Allim, to estimate allele‐specific gene expression. Because mapping bias is a major problem for reliable estimates of allele‐specific gene expression using RNA‐seq, Allim combines two different strategies to account for the mapping biases. In order to reduce the mapping bias, Allim first generates a polymorphism‐aware reference genome that accounts for the sequence variation between the alleles. Then, a sequence‐specific simulation tool estimates the residual mapping bias. Statistical tests for allelic imbalance are provided that can be used with the bias corrected RNA‐seq data. 相似文献
6.
Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (Oryza sativa) coleoptiles under anoxia and re‐oxygenation 下载免费PDF全文
Reena Narsai David Secco Matthew D. Schultz Joseph R. Ecker Ryan Lister James Whelan 《The Plant journal : for cell and molecular biology》2017,89(4):805-824
7.
8.
萍乡显性雄性核不育水稻超微结构研究 总被引:7,自引:0,他引:7
利用电镜技术对萍乡显性核不育水稻可育株和不育株花粉形成及发育过程和药壁组织的基本结构及其发育进行了研究。导致了其不育花粉败育的主要原因有:(1)绒毡层细胞表现为延迟解体,乌氏体不能与小孢子细胞壁的形成,特别是纯合不育株绒毡层细胞存在乌氏体的异位分布;(2)药隔维管束异常,导致营养物质运输缺乏,薄壁细胞液泡化,排列紊乱,杂合不育株薄壁细胞互相融合,出现核转移的独特现象。 相似文献
9.
10.
Raquel N. da Silva Augusto C. Tomé João P. C. Tomé Maria G. P. M. S. Neves Maria A. F. Faustino José A. S. Cavaleiro Anabela Oliveira Adelaide Almeida Ângela Cunha 《Microbiology and immunology》2012,56(10):692-699
The aims of this work were to (a) evaluate the susceptibility of endospores of Bacillus cereus, B. licheniformis, B. sphaericus and B. subtilis to photodynamic inactivation using a tricationic porphyrin as photosensitizer, (b) assess the efficiency of adsorption of the photosensitizer in endospore material as a determinant of the susceptibility of endospores of different Bacillus species to photo‐inactivation, (c) determine the value of B. cereus as a model organism for studies of antimicrobial photodynamic inactivation of bacterial endospores. The results of irradiation experiments with endospores of four species of Bacillus showed that B. cereus was the only species for which efficient endospore photo‐inactivation (> 3 log reduction) could be achieved. Endospores of B. licheniformis, B. sphaericus and B. subtilis were virtually resistant to photo‐inactivation with tricationic porphyrin. The amount of porphyrin bound to endospore material was not significantly different between species, regardless of the presence of an exosporium or exosporium‐like outer layer. The sensitivity of endospores to photodynamic inactivation with a tricationic porphyrin is highly variable among different species of the genus Bacillus. The presence of an exosporium in endospores of B. cereus and B. sphaericus, or an exosporium‐like glycoprotein layer in endospores of B. subtilis, did not affect the amount of bound photosensitizer and did not explain the inter‐species variability in susceptibility to photodynamic inactivation. The results imply that the use of B. cereus as a more amenable surrogate of the exosporium‐producing B. anthracis must be carefully considered when testing new photosensitizers for their antimicrobial photo‐inactivation properties. 相似文献
11.
Pollen adhesion and hydration are the earliest events of the pollen–stigma interactions, which allow compatible pollen to fertilize egg cells, but the underlying mechanisms are still poorly understood. Rice pollen are wind dispersed, and its pollen coat contains less abundant lipids than that of insect‐pollinated plants. Here, we characterized the role of OsGL1‐4, a rice member of the Glossy family, in pollen adhesion and hydration. OsGL1‐4 is preferentially expressed in pollen and tapetal cells and is required for the synthesis of very long chain alkanes. osgl1‐4 mutant generated apparently normal pollen but displayed excessively fast dehydration at anthesis and defective adhesion and hydration under normal condition, but the defective adhesion and hydration were rescued by high humidity. Gas chromatography–mass spectrometry analysis suggested that the humidity‐sensitive male sterility of osgl1‐4 was probably due to a significant reduction in C25 and C27 alkanes. These results indicate that very long chain alkanes are components of rice pollen coat and control male fertility via affecting pollen adhesion and hydration in response to environmental humidity. Moreover, we proposed that a critical point of water content in mature pollen is required for the initiation of pollen adhesion. 相似文献
12.
Although some tissue-specific cis-acting elements have been identified, the molecular mechanisms of tissue-specific gene expression remain elusive. Here, we report the identification by a yeast one-hybrid screen of five proteins, Os10g31330/glycine-rich, Os01g10400/metallothionein-like, Os05g51180/nucleic acid-binding, Os05g37930/unknown and Os01g01689/phosphatidylinositol kinase that bound to either the positive or negative tissue-specific cis elements of a rice promoter from the green tissue-specific D54O gene. These proteins are localised in the nucleus and the genes encoding them are differentially expressed in different tissues, further suggesting their putative roles in regulating gene expression. These results suggest that the green tissue-specific expression of the D54O gene may be regulated by the interaction of multiple proteins with cis elements in the promoter region. 相似文献
13.
Engineered selective plant male sterility through pollen‐specific expression of the EcoRI restriction endonuclease 下载免费PDF全文
Reginald J. Millwood Hong S. Moon Charleson R. Poovaiah Balasubramaniam Muthukumar John Hollis Rice Jason M. Abercrombie Laura L. Abercrombie William Derek Green Charles Neal Stewart Jr 《Plant biotechnology journal》2016,14(5):1281-1290
Unintended gene flow from transgenic plants via pollen, seed and vegetative propagation is a regulatory concern because of potential admixture in food and crop systems, as well as hybridization and introgression to wild and weedy relatives. Bioconfinement of transgenic pollen would help address some of these concerns and enable transgenic plant production for several crops where gene flow is an issue. Here, we demonstrate the expression of the restriction endonuclease EcoRI under the control of the tomato pollen‐specific LAT52 promoter is an effective method for generating selective male sterility in Nicotiana tabacum (tobacco). Of nine transgenic events recovered, four events had very high bioconfinement with tightly controlled EcoRI expression in pollen and negligible‐to‐no expression other plant tissues. Transgenic plants had normal morphology wherein vegetative growth and reproductivity were similar to nontransgenic controls. In glasshouse experiments, transgenic lines were hand‐crossed to both male‐sterile and emasculated nontransgenic tobacco varieties. Progeny analysis of 16 000–40 000 seeds per transgenic line demonstrated five lines approached (>99.7%) or attained 100% bioconfinement for one or more generations. Bioconfinement was again demonstrated at or near 100% under field conditions where four transgenic lines were grown in close proximity to male‐sterile tobacco, and 900–2100 seeds per male‐sterile line were analysed for transgenes. Based upon these results, we conclude EcoRI‐driven selective male sterility holds practical potential as a safe and reliable transgene bioconfinement strategy. Given the mechanism of male sterility, this method could be applicable to any plant species. 相似文献
14.
15.
Jinjin Zhang Xiping Wang Stacy Singer Zhongchi Liu Yingjun Yang Guohua Yan Zongrang Liu 《Plant biotechnology journal》2014,12(7):951-962
Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co‐existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer–promoter and promoter–promoter interactions in transgenic plants and demonstrated that three of four flower‐specific enhancer/promoters were capable of distantly activating a pollen‐ and stigma‐specific Pps promoter (fused to the cytotoxic DT‐A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen‐ and carpel‐specific DT‐A expression, thus resulting in tissue ablation in an orientation‐independent manner; this activation was completely abolished by the insertion of an enhancer‐blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue‐specific DT‐A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant‐derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue‐specific engineering of multiple traits using a single‐vector stacking approach. Therefore, our work highlights the importance of adopting enhancer‐blocking insulators in transformation vectors to minimize promoter–promoter interactions. The practical and fundamental significance of these findings will be discussed. 相似文献
16.
17.
18.
Jun Rong Zhiping Song Tom J. De Jong Xinsheng Zhang Shuguang Sun Xian Xu Hui Xia Bo Liu Bao‐Rong Lu 《Plant biotechnology journal》2010,8(4):452-464
Fast development and commercialization of genetically modified plants have aroused concerns of transgene escape and its environmental consequences. A model that can effectively predict pollen‐mediated gene flow (PMGF) is essential for assessing and managing risks from transgene escape. A pollen‐trap method was used to measure the wind‐borne pollen dispersal in cultivated rice and common wild rice, and effects of relative humidity, temperature and wind speed on pollen dispersal were estimated. A PMGF model was constructed based on the pollen dispersal pattern in rice, taking outcrossing rates of recipients and cross‐compatibility between rice and its wild relatives into consideration. Published rice gene flow data were used to validate the model. Pollen density decreased in a simple exponential pattern with distances to the rice field. High relative humidity reduced pollen dispersal distances. Model simulation showed an increased PMGF frequency with the increase of pollen source size (the area of a rice field), but this effect levelled off with a large pollen‐source size. Cross‐compatibility is essential when modelling PMGF from rice to its wild relatives. The model fits the data well, including PMGF from rice to its wild relatives. Therefore, it can be used to predict PMGF in rice under diverse conditions (e.g. different outcrossing rates and cross‐compatibilities), facilitating the determination of isolation distances to minimize transgene escape. The PMGF model may be extended to other wind‐pollinated plant species such as wheat and barley. 相似文献
19.
Michael K. Dyck Mariette Ouellet Marc Gagn Denis Petitclerc Marc‐Andr Sirard Franois Pothier 《Molecular reproduction and development》1999,54(1):32-42
Insulin‐like growth factor‐I (IGF‐I) is a low molecular weight peptide that mediates the cell proliferating actions of growth hormone. Evidence exists indicating that IGF‐I is produced by various cell types and this growth factor has been implicated in a variety of reproductive processes. To investigate the effect of IGF‐I over‐expression on reproductive systems, we generated three independent lines of transgenic mice harbouring a human IGF‐I cDNA (hIGF‐I) under the control of a Cytomegalovirus immediate early (CMV) promoter. The CMV promoter was used in an attempt to direct expression of IGF‐I into a variety of tissues both reproductive and non‐reproductive. Yet expression of the foreign hIGF‐I gene, determined by Northern blot, was found to occur only in the testicular tissues of the male mice, apparently due to methylation of the transgene in all the tissues tested except the testes, which demonstrate transgene hypomethylation. Evaluation of the transgene expression during testicular development revealed that expression begins between 10 and 15 days of development, coinciding with the appearance of the zygotene and pachytene primary spermatocytes during early spermatogenesis, therefore indicating germ line expression of the transgene. Extensive study of the CMV‐hIGF‐I transgenic lines of mice has revealed that the effects of the transgene expression do not extend beyond the testicular tissues. No significant differences (P > 0.05) in the IGF‐I serum levels, growth rates, or testicular histology have been observed between transgenic and non‐transgenic male siblings. The ability of transgenic males to produce offspring also appears unaffected. Evaluation of the IGF binding protein (IGFBP) levels in the testicular tissues of CMV‐hIGF‐I transgenic mice by Western ligand blot revealed an increase in the concentration of testicular proteins with molecular weights corresponding to IGFBP‐2 and IGFBP‐3. These results suggest that the testicular over‐expression of IGF‐I induces increased IGFBP localization in this tissue. Inhibition of IGF activity by the IGFBPs would explain the lack of a dramatic physiological effect in the CMV‐hIGF‐I transgenic mice, despite the presence of elevated testicular IGF‐I. The observation that testis specific IGF‐I overexpression induces localization of IGFBPs in this tissue confirms the existence of a well regulated testicular IGF system and supports the convention that this growth factor plays an important role in testicular function. Mol. Reprod. Dev. 54:32–42, 1999. © 1999 Wiley‐Liss, Inc. 相似文献