首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Litvaitis  M. K.  Newman  L. J. 《Hydrobiologia》2001,444(1-3):177-182
Systematic relationships within the cotylean family Pseudocerotidae were examined using nucleotide sequences of the D3 expansion segment of the 28S rDNA gene. A previously suggested separation of Pseudoceros and Pseudobiceros based on the number of male reproductive systems was confirmed. Regardless of the algorithm employed, Pseudoceros always formed a monophyletic clade. Pseudobiceros appeared to be paraphyletic; however, a constrained maximum parsimony tree was not significantly longer (2 steps, = 0.05). Additionally, the genera Maiazoon, Phrikoceros and Tytthosoceros were validated as taxonomic entities, and their relationships to other genera within the family were determined. Molecular data also supported species separations based on colour patterns. An intraspecific genetic distance of 1.14% was found for Pseudoceros bifurcus, whereas the intrageneric distance was 3.58%. Genetic distances among genera varied, with the closest distance being 2.048% between Pseudobiceros and Maiazoon, and the largest distance (8.345%) between Pseudoceros and Tytthosoceros.  相似文献   

2.
We documented capture of microalgal prey by several species of wild‐caught Müller's larvae of polyclad flatworms. To our knowledge, this is the first direct observation of feeding mechanism in this classical larval type. High‐speed video recordings showed that virtually all captures were mediated by large‐scale transient ciliary reversal over one or more portions of the main ciliary band corresponding to individual lobes or tentacles. Local ciliary beat reversals altered near‐field flow to suck parcels of food‐containing water mouthward. Many capture episodes entailed sufficient coordinated flow disruption that these compact‐bodied larvae tumbled dramatically. Similar behaviors were recorded in at least four distinct species, one of which corresponds to the ascidian‐eating polyclad Pseudoceros canadensis.  相似文献   

3.
SUMMARY Myogenesis of two representatives of Platyhelminthes, Stylostomum sanjuania and Pseudoceros canadensis, was followed from egg deposition until well‐differentiated free‐swimming larval stages, using F‐actin staining and confocal laserscanning microscopy. Zonulae adhaerentes are the only structures to stain before 50% of development between egg deposition and hatching in S. sanjuania, and before 67% of development in P. canadenis. Subsequently, irregular fibers appear in the embryo, followed by a helicoid muscle close to the apical pole. Three longitudinal muscle pairs form, of which the dorsal pair remains more pronounced than the others. Gradually, new muscles form by branching or from double‐stranded muscle zones adjacent to existing muscles. This results in an elaborate muscular bodywall that consists of a single helicoid muscle as well as multiple circular and longitudinal muscles. Diverse retractor muscles insert at the sphincter muscles around the stomodeum. The overall arrangement and formation mode of the larval musculature appears very similar in both species, although only P. canadensis has a primary circular muscle posterior to the helicoid muscle. Muscle formation in the apical region of the embryo precedes that at the abapical pole and the primary longitudinal muscles form slightly later than the primary circular muscles. Myogenesis and larval myoanatomy appears highly conserved among polyclad flatworms, but differs significantly from that of other trochozoan clades. Our data suggest that the larval muscular ground pattern of polyclad larvae comprises a bodywall consisting of a helicoid muscle, circular and longitudinal muscles, several retractor muscles, and sphincter muscles around the stomodeum.  相似文献   

4.
Pachut, J.F. & Fisherkeller, P. 2010: Inferring larval type in fossil bryozoans. Lethaia, Vol. 43, pp. 396–410. Larval type in extinct organisms might be recognizable because larvae of living marine invertebrates are approximately of the same size as the initial post‐larval organism. Two larval types typically occur. Planktotrophic larvae feed on other members of the plankton, potentially prolonging their larval existence and producing broad geographic distributions. Conversely, lecithotrophic larvae feed on yolk supplied by the fertilized egg, often settle quickly after release, and display more restricted distributions. However, some lecithotrophic bryozoans undergo embryonic fission forming multiple, small, polyembryonic larvae. The relationship between post‐larval size and larval type was evaluated in bryozoans by comparing the size of the ancestrula, the founding individual of a colony, to the sizes of extant planktotrophic, lecithotrophic and polyembryonic lecithotrophic larvae and ancestrulae. The sizes of larvae and ancestrulae in extant lecithotrophic and planktotrophic cheilostome (gymnolaemate) species are statistically the same. They are, however, statistically larger than the polyembryonic larvae of extant cyclostomes (stenolaemates). In turn, the sizes of cyclostome larvae are indistinguishable from the ancestrulae of extant and fossil cyclostomes, the ancestrulae of other fossil stenolaemate species measured from the literature, and the ancestrulae of three of four genera from North American Cincinnatian strata. Ancestrulae of a fourth genus, Dekayia, are the same size as cyclostome ancestrulae but are statistically smaller than the ancestrulae of other stenolaemates. With few exceptions, stenolaemates have statistically smaller larvae and ancestrulae than both lecithotrophic and planktotrophic cheilostomes. We infer that the sizes of fossil ancestrulae permit the discrimination of taxa that had polyembryonic lecithotrophic larvae from those possessing other larval types. This inference is strengthened, in several cases, by the co‐occurrence of brood chambers (gynozooecia) and restricted palaeobiogeographic distributions. The presence of cyclostomes in Early Ordovician strata suggests that polyembryony may have been acquired during the initial radiation of Class Stenolaemata. Polyembryony appears to be a monophyletic trait, but confirmation requires the demonstration that species of several stenolaemate suborders lacking skeletally expressed brood chambers possessed polyembryonic larvae. □Ancestrulae, evolution, fossil bryozoans, gynozooecia, larvae.  相似文献   

5.
6.
We simulated intraspecific usurpation in two species of paper wasps at a field site in Michigan to compare the species' treatment of foreign brood. Queens of Polistes fuscatus, a species that commonly uses intraspecific usurpation as an alternative reproductive tactic, destroyed significantly fewer large larvae and significantly more small larvae than queens of P. dominulus, a sympatric species that rarely usurps. The pattern of brood destruction exhibited by P. fuscatus was consistent with the previously published findings that P. fuscatus usurpers destroy reproductive‐destined brood (eggs and small larvae), but not worker‐destined brood (large larvae and pupae) that are subsequently used by a usurper to raise her own reproductives. The pattern of brood destruction displayed by P. dominulus differed from that of Polistes species that frequently engage in intraspecific usurpation. The brood destruction pattern in P. dominulus may have been shaped by nest adoption, a common alternative reproductive tactic in this species. If so, it is not clear why P. dominulus would destroy large, worker‐destined larvae.  相似文献   

7.
In extant brachiopods, parental brooding of the larvae occurs exclusively within Rhynchonelliformea. Methods of larval protection range from simple retention of the larvae within the mantle cavity, to sophisticated brood care within highly specialized brood pouches found in Argyrotheca and Joania (Terebratulida, Megathyridoidea), Gwynia (Terebratulida, Gwynioidea), and all Thecideoidea (Thecideida). Previous studies on the reproductive biology of Argyrotheca yielded contrasting results on the epithelial origin of the brood pouches in this genus. Here, representatives of different species of Argyrotheca from the Belize Barrier Reef were examined using histological section series. Brood pouches of four species, A. cf. schrammi and Argyrotheca sp. 1–3, are of the same basic structure, formed by invaginations of the anterior body wall and connected to the visceral cavity via the metanephridia. The same four species are simultaneously hermaphroditic, suggesting that fertilization is achieved, at least partly, through selfing. One species, Argyrotheca rubrocostata, differs significantly from all others as it has no brood pouch and gonochoric gonads. Thus, the presence of brood pouches and simultaneous hermaphroditism are concluded to be correlated within Megathyridoidea and proposed to be homologous traits of Joania and several but not all species of Argyrotheca, questioning the monophyletic status of both genera. In contrast to the brood pouches of Thecideoidea, lophophoral epithelium is not involved in the formation of the pouches of Argyrotheca and Joania. Therefore, megathyridoid and thecideoid brood pouches are not homologous but evolved independently within rhynchonelliform brachiopods. All brachiopods with brood pouches share a micromorphic form and a short life span, limiting the space and time available for gamete and larval development. We suggest that the brood pouches and the hermaphroditic gonads of Argyrotheca spp. and Joania compensate these limitations by minimizing the loss of gametes and larvae, and by maximizing the chances of successful fertilization. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
9.
This study builds upon past work investigating seedling leaf physiology and structure among tropical trees. We seek to explain how related and unrelated species and genera co‐occur in relation to varying amounts of shade. Seedlings of eight Sri Lankan rain forest tree species in three genera (Dipterocarpus, Mesua, Shorea section Doona) were grown for 2 years in four treatments that simulated a variety of shade environments across the understorey of a rain forest. All three genera comprise major canopy tree species of mixed dipterocarp forest, a widespread and important Asian tropical forest type. Compared with the other genera, Dipterocarpus spp. had the largest leaves, the thinnest leaf blades and relatively high rates of stomatal conductivity across all shade treatments, making them water‐loving species sensitive to droughty soils. Mesua spp. had intermediate sized leaves, with the thickest leaf blades and palisade mesophyll layers, the highest stomatal densities, the smallest aperture sizes and the lowest rates of stomatal conductance, making them the most water conservative. Shorea spp. were generally intermediate in blade and palisade mesophyll dimensions between Dipterocarpus spp. and Mesua spp., but they had the smallest leaves. Greater differences among genera than among species within genera were apparent, but species differences within genera were also apparent. Differences among genera and species conform to their known successional status and topographical affinities and provide a more comprehensive understanding of species site adaptation. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 167 , 332–343.  相似文献   

10.
Leaves and stalks of many sorghum genotypes accumulate dark red or purple pigments upon wounding while some plants, called ‘tan,’ do not. Grains with unpigmented ‘white’ pericarps grown on tan plants are more desirable for food. The hypothesis tested was that pigments in plants protected grain against the panicle diseases grain mould and head smut. Near‐isogenic tan or purple plant colour genotypes with white grain were planted at Lincoln and Ithaca, NE and Corpus Christi, TX. The field grown grain was plated onto semi‐selective media to detect the presence of grain colonisation by mould genera Alternaria, Fusarium and Curvularia. More Fusarium and Curvularia spp. were recovered from grain grown at Corpus Christi than the Nebraska locations; however, there was no indication that the grain from purple plants was more resistant to the three fungal genera. Most fungi were identified morphologically as Alternaria alternata. Molecular identification of Fusarium species, using translation elongation factor 1‐α gene sequences, showed that Fusarium thapsinum and Fusarium proliferatum infected grain at all three locations. Head smut disease of panicles, caused by the fungus Sporisorium reilianum, was assessed at Corpus Christi; surprisingly, purple plants had significantly greater disease incidence than tan plants. We propose that the tan plant colour lines with white grain are promising for development of food‐grade sorghums not more susceptible than pigmented lines to grain mould and head smut.  相似文献   

11.
A phylogenetic analysis of Polycladida based on two partial mitochondrial genes (cox1 and 16S) is provided. The analysis includes 30 polyclad terminals that represent species from the two taxa which traditionally divide the groups Cotylea and Acotylea. Our phylogenetic analyses produced a well-supported hypothesis that confirms the monophyly of Polycladida, as well as Acotylea and Cotylea. Within Acotylea, there are two lineages not highly supported: on one hand, Leptoplanoidea (excluding Hoploplana elisabelloi) and one Stylochoidea member (Pseudostylochus intermedius) (classification sensu Faubel, 1983, 1984), and on the other hand, Stylochoidea members together with Discocelis tigrina and H. elisabelloi. The genera Stylochus and Imogine are not monophyletic. Within Cotylea, Pseudocerotidae and Euryleptidae are monophyletic, though not highly supported, while Prosthiostomidae is not. Euryleptoidea is paraphyletic. The genera Pseudobiceros and Pseudoceros are monophyletic and highly supported. Our results suggest that, within Acotylea, the prostatoid organs of Discocelis may have been derived from a prostatic vesicle. The genus Hoploplana could be included in Stylochoidea. Within Cotylea, the common ancestor of Euryleptidae and Pseudocerotidae might have been an aposematic animal with tentacles.  相似文献   

12.
Diving beetles such as Dytiscus and Cybister species (Coleoptera: Dytiscidae) usually oviposit inside an aquatic plant stem beneath the surface of the water. The hatched larvae need to escape from the stem to intake oxygen from the air. To determine where larvae of these diving beetles hatch in the plant stem, the hatchability and escape rates in larvae of Dytiscus sharpi Wehncke, Cybister chinensis Motshulsky, Cybister lewisianus Sharp, and Cybister brevis Aubé were investigated under laboratory conditions. Hatchability of D. sharpi in the stem of Sagittaria trifolia L. (Alismataceae) was extremely low (8.2%). However, it was high (>90%) when late‐stage eggs (2–3 days before hatching) were isolated from the stem and kept in water. On the other hand, the hatchability of Cybister spp. was high (88–95%) in S. trifolia. Usually, Cybister spp. females bite a hole in the plant stem on oviposition. When the oviposition pore in the stem was plugged with glass wool, no larvae could escape from the stem, indicating that the oviposition pore was the only exit for hatched larvae of Cybister spp. In contrast, females of D. sharpi oviposited directly by making a crack in the stem of Oenanthe javanica (Blume) DC. (Apiaceae) without biting. Eggs grew to a length and diameter equal to the stem crack size 2–3 days before hatching. Dytiscus sharpi eggs isolated from O. javanica were artificially inserted into plant stems of O. javanica or S. trifolia (so‐called inserted egg model), and the hatchability and larval escape rates were determined. Larval escape strongly depended on the stem crack width of both O. javanica and S. trifolia, suggesting that the stem crack was an exit for hatched larvae of D. sharpi.  相似文献   

13.
14.
As female birds are able to lay no more than a single egg each day, in those species producing larger clutches the first laid eggs may get a developmental head‐start over later eggs in the clutch. All other things being equal, the differential pattern of development across the clutch may contribute to hatching asynchrony and subsequent inequity in the competition between brood mates, and ultimately increase variance in the quality and fitness of first‐ and last‐laid offspring. It has been suggested that females might allocate resources differently across the laying sequence to moderate the developmental rate and hatching time of different embryos. We tested this theory in the Zebra Finch Taeniopygia guttata, a common model species for investigating maternal effects in birds. We removed 758 eggs from 160 nests shortly after they were laid and used artificial incubators to control for parental effects and monitor hatching times. Eggs from larger clutches consistently hatched sooner than those from average‐sized clutches, demonstrating that the intrinsic properties of an egg can alter the developmental time of embryos. There were also differences in the development time of eggs across the laying sequence, but these patterns were weaker, inconsistent and unrelated to sequential investment across the laying sequence in a straightforward way. This study indicates that maternal resource allocation to eggs across the laying sequence and across clutch sizes can influence development times and play a potentially important role in determining the competitive dynamics of broods.  相似文献   

15.
Intraspecific variation in egg size and hatching size, and the genetic and environmental trade‐offs that contribute to variation, are the basis of the evolution of life histories. The present study examined both univariate and multivariate temperature‐mediated plasticity of life‐history traits, as well as temperature‐mediated trade‐offs in egg size and clutch size, in two planktotrophic species of marine slipper limpets, Crepidula. Previous work with two species of Crepidula with large eggs and lecithotrophic development has shown a significant effect of temperature on egg size and hatching size. To further examine the effect of temperature on egg size in Crepidula, the effects of temperature on egg size and hatching size, as well as the possible trade‐offs with other the life‐history features, were examined for two planktotrophic species: Crepidula incurva and Crepidula cf. marginalis. Field‐collected juveniles were raised at 23 or 28 °C and egg size, hatching size, capsules/brood, eggs/capsule, time to hatch, interbrood interval, and final body weight were recorded. Consistent with results for the lecithotrophic Crepidula, egg size and hatching size decreased with temperature in the planktotrophic species. The affects of maternal identity and individual brood account for more than half of the intraspecific variation in egg size and hatching size. Temperature also showed a significant effect on reproductive rate, with time to hatch and interbrood interval both decreasing with increasing temperature. However, temperature had contrasting effects on the number of offspring. Crepidula cf. marginalis has significantly more eggs/capsule and therefore more eggs per brood at 28 °C compared to 23 °C, although capsules/brood did not vary with temperature. Crepidula incurva, on the other hand, produced significantly more capsules/brood and more eggs per brood at the lower temperature, whereas the number of eggs/capsule did not vary with temperature. The phenotypic variance–covariance matrix of life‐history variables showed a greater response to temperature in C. incurva than in C. cf. marginalis, and temperature induced trade‐offs between offspring size and number differ between the species. These differences suggest that temperature changes as a result of seasonal upwelling along the coast of Panama will effect the reproduction and evolution of life histories of these two co‐occurring species differently. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

16.
Laboratory‐validated data on the survival, development and hatching responses of fertilized Pacific cod Gadus macrocephalus eggs from the northern Japan stock were determined through an incubation experiment. The optimum temperature for survival until hatching ranged from 4 to 8° C. No significant difference in development rates was found between the populations from Mutsu Bay, Japan, and western Canadian coastal waters even though the samples may belong to different G. macrocephalus stocks. Gadus macrocephalus larvae hatched asynchronously from egg batches despite incubation under the same environment during their development. Both incubation temperature and temperature‐mediated hatch rank affect size and yolk reserve. These data suggest that variations in water temperatures within an ecological range markedly influence the development rates, survival and hatching of the eggs, as well as the stage at hatch larvae of G. macrocephalus. Asynchronous hatching and the production of offspring with variable sizes and yolk reserves are considered evolutionary bet‐hedging strategies that enable the species to maximize their likelihood of survival in an environment with variable temperatures.  相似文献   

17.
Abstract Cyasterone is the main phytoecdysteroid component from cultured plants of Ajuga nipponensis, and common in other Ajuga species. Results showed that when treated with 50 mg/L cyasterone, the egg hatching of diamondback moth was retarded. The total percentage of eggs hatched in treatment was 94.7%, significantly less than that in control, which was 100%. Low toxicity and good antifeeding activity to the 3rd instar larvae were exhibited, which are dependent upon concentration. The growth and development of diamondback moth were affected by cyasterone. It was found that, at concentrations higher than 50 mg/L cyasterone, the larval growth and egg production were inhibited; while promoted at lower concentrations. This dual role of cyasterone might be attributed to its hormonal activity and antifeeding activity, which resulted in poor nutrition. The pupation and eclosion were hindered by treatment of larvae. This insect species was more susceptible to cyasterone than 20‐hydroxyecdysone.  相似文献   

18.
A new species of polyclad flatworm, Pseudoceros imitatus sp. nov. (Polycladida, Pseudocerotidae), is described from Papua New Guinea and recorded from the Great Barrier Reef, Australia. This polyclad resembles the phyllidiid nudibranch Phyllidiella pustulosa (Cuvier) (Nudibranchia, Phyllidiiae) in size and colour pattern. It is proposed that P. imitatus is a mimic of the aposematic nudibranch in order to avoid predation by reef fish. Mimicry between polyclad flatworms and opisthobranch molluscs is reviewed.  相似文献   

19.
Using flow cytometric analysis of fluorescence, we measured the genome sizes of 18 cultured “free‐living” species and 29 Symbiodinium spp. isolates cultured from stony corals, gorgonians, anemones, jellyfish, and giant clams. Genome size directly correlated with cell size, as documented previously for most eukaryotic cell lines. Among the smallest of dinoflagellates, Symbiodinium spp. (6–15 μm) possessed the lowest DNA content that we measured (1.5–4.8 pg·cell?1). Bloom‐forming or potentially harmful species in the genera Alexandrium, Karenia, Pfiesteria, and Prorocentrum possessed genomes approximately 2 to 50 times larger in size. A phylogenetic analysis indicated that genome/cell size has apparently increased and decreased repeatedly during the evolution of dinoflagellates. In contrast, genome sizes were relatively consistent across distantly and closely related Symbiodinium spp. This may be the product of intracellular host habitats imposing strong selective pressures that have restricted symbiont size.  相似文献   

20.
1. Fecundity of a Dikerogammarus villosus population at Spitz was studied in the Austrian Danube during the 3‐year period 2002–2004. Ovigerous females were absent in October and November, and extremely scarce in December when the reproductive season started again slowly. From January to September pre‐copulatory pairs and egg‐carrying females were present. The reproductive cycle lasted for 9–10 months. 2. Various pigmentation phenotypes of D. villosus have been described in the literature. However, no significant differences were found between the reproductive variables studied here and several colour morphs. Mating was size‐assortative; mean body length of males was about 1.3 times greater than that of their potential mates, and the wet weight was approximately twice as heavy. 3. The relationship between the number of embryos per clutch and the wet weight of females was described by a 3‐parameter power equation. The population mean was 43 eggs with a range of five to 194 eggs. Eighty‐two specimens from 1359 D. villosus females had more than 100 eggs: the smallest of these females was 12 mm long (30 mg) wet weight, and the largest, which was 18 mm long (91 mg), had 194 eggs in embryonic development stage 4. 4. Numbers of embryos in developmental stages 2 (early egg stage) and 7 (newly hatched neonates) differed significantly with body wet weight of ovigerous females (P < 0.05). For an average female in the range 10–12 mm (20–30 mg) the number of juveniles in the brood pouch was 74% of the number of stage 2 eggs. This value can be interpreted as the survival rate of eggs. 5. The overall mean egg volume (EV, ±95% CL) of stage 2 eggs of D. villosus was 0.05 ± 0.001 mm3, and EV increased significantly at each stage of development. At stage 6, egg volume had increased by a factor of 2.6, and averaged 0.13 ± 0.001 mm3. In comparison, G. fossarum and G. roeseli had significantly larger eggs in all developmental stages. 6. Mean egg size of D. villosus (0.063 mm3) was maximal in January. For D. villosus (and G. roeseli) the minimum mean egg size occurred in September. In contrast to G. fossarum and G. roeseli, a second peak in egg size was not observed for D. villosus, and egg size fell more or less successively from January to September. 7. A simple index of fecundity was calculated from the number of stage 2 eggs divided by the female's wet weight. The highest values were observed in April and May, when females from the overwintering generation grew to their maximum body size. Thus the release of a large number of neonates corresponds with the availability of plentiful food and rising water temperatures for juvenile growth in the spring. The lowest value occurred in December. In June the small females of a summer generation appeared, with a naturally low fecundity. 8. The relationship between brood development time and water temperature was studied in the laboratory at a series of constant temperatures. At 16 °C, mean brood development time was 14 days for D. villosus, compared with about 3 weeks for the indigenous species. At 10 °C, mean brood development time was 24 days in D. villosus, compared with 40 days in G. fossarum and 44 days in G. roeseli. At 4 °C it was 1.8 and 3.5 times longer in G. fossarum and G. roeseli. 9. The number of offspring produced by a single clutch from a large female D. villosus is considerably higher than the total numbers produced by the indigenous freshwater gammarids, such as G. fossarum, G. roeseli and G. pulex, during their life‐spans of 1.5–2 years in seven to nine successive broods. Only one or two large ovigerous D. villosus would probably be enough to start a new population. A potentially high reproductive capacity, comparatively small eggs, optimal timing to release the maximum number of neonates per female in April/May, and a long reproductive cycle, together with rapid development of eggs, rapid growth to sexual maturation, short life span, tolerance to a wide range of environmental conditions, and exceptional predatory capabilities, all give the invasive Ponto‐Caspian gammarid an opportunity to become globally distributed in freshwater ecosystems of the temperate climate zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号