首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Density‐dependent phase polyphenism occurs when changes in density during the juvenile stages result in a developmental shift from one phenotype to another. Density‐dependent phase polyphenism is common among locusts (Orthoptera: Acrididae). 2. Previously, we demonstrated a longitudinal geographic cline in adult body size (western populations = small adults; eastern populations = large adults) in the eastern lubber grasshopper (Romalea microptera) in south Florida. As lubbers are confamilial with locusts, we hypothesised that the longitudinal size cline was partly due to density‐dependent phase polyphenism. 3. We tested the effect of density, population, and density×population interaction on life‐history traits (pronotum length, mass, cumulative development time, growth rate) of, and proportion surviving to, each of the five instars and the adult stage in a 2 × 3 factorial laboratory experiment with two lubber populations, each reared from hatchling to adult at three different densities. 4. The effect of density on life history and survival was independent of the effects of population on life history and survival. Higher densities led to larger adult sizes (pronotum, mass) and lower survivorship. The western population had smaller adult masses, fewer cumulative days to the adult stage, and higher survivorship than the eastern population. 5. Our data suggest that lubber grasshoppers exhibit density‐dependent phase polyphenism initiated by the physical presence of conspecifics. However, the plastic response of adult size to density observed in the laboratory is not consistent with the relationship between phenotypes and adult density in the field. Genetic differences between populations observed in the laboratory could contribute to size and life‐history differences among lubber populations in the field.  相似文献   

2.
There has been much recent research interest in the existence of a major axis of life‐history variation along a fast–slow continuum within almost all major taxonomic groups. Eco‐evolutionary models of density‐dependent selection provide a general explanation for such observations of interspecific variation in the "pace of life." One issue, however, is that some large‐bodied long‐lived “slow” species (e.g., trees and large fish) often show an explosive “fast” type of reproduction with many small offspring, and species with “fast” adult life stages can have comparatively “slow” offspring life stages (e.g., mayflies). We attempt to explain such life‐history evolution using the same eco‐evolutionary modeling approach but with two life stages, separating adult reproductive strategies from offspring survival strategies. When the population dynamics in the two life stages are closely linked and affect each other, density‐dependent selection occurs in parallel on both reproduction and survival, producing the usual one‐dimensional fast–slow continuum (e.g., houseflies to blue whales). However, strong density dependence at either the adult reproduction or offspring survival life stage creates quasi‐independent population dynamics, allowing fast‐type reproduction alongside slow‐type survival (e.g., trees and large fish), or the perhaps rarer slow‐type reproduction alongside fast‐type survival (e.g., mayflies—short‐lived adults producing few long‐lived offspring). Therefore, most types of species life histories in nature can potentially be explained via the eco‐evolutionary consequences of density‐dependent selection given the possible separation of demographic effects at different life stages.  相似文献   

3.
We present a novel perspective on life‐history evolution that combines recent theoretical advances in fluctuating density‐dependent selection with the notion of pace‐of‐life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short‐lived, bold, aggressive and highly dispersive ‘fast’ types at one end of the POLS to the less fecund, long‐lived, cautious, shy, plastic and socially responsive ‘slow’ types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco‐evolutionary dynamics with population density – a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density‐dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density‐dependent selection. Phenotypic plasticity and/or genetic (co‐)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density‐dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life‐history evolution and thus our ability to predict natural population dynamics.  相似文献   

4.
5.
Empirical work suggest that long‐lived organisms have adopted risk sensitive reproductive strategies where individuals trade the amount of resources spent on reproduction versus survival according to expected future environmental conditions. Earlier studies also suggest that climate affects population dynamics both directly by affecting population vital rates and indirectly through long‐term changes in individual life histories. Using a seasonal and state‐dependent individual‐based model we investigated how environmental variability affects the selection of reproductive strategies and their effect on population dynamics. We found that: (1) dynamic, i.e. plastic, reproductive strategies were optimal in a variable climate. (2) Females in poor and unpredictable climatic regimes allocated fewer available resources in reproduction and more in own somatic growth. This resulted in populations with low population densities, and a high average female age and body mass. (3) Strong negative density dependence on offspring body mass and survival, along with co‐variation between climatic severity and population density, resulted in no clear negative climatic effects on reproductive success and offspring body mass. (4) Time series analyses of population growth rates revealed that populations inhabiting benign environments showed the clearest response to climatic perturbations as high population density prohibited an effective buffering of adverse climatic effects as individuals were not able to gain sufficient body reserves during summer. Regularly occurring harsh winters ‘harvested’ populations, resulting in persistent low densities, and released them from negative density dependent effects, resulting in high rewards for a given resource allocation.  相似文献   

6.
We tested the hypothesis that density‐dependent competition influences the evolution of offspring size. We studied two populations of the least killifish (Heterandria formosa) that differ dramatically in population density; these populations are genetically differentiated for offspring size, and females from both populations produce larger offspring when they experience higher social densities. To look at the influences of population of origin and relative body size on competitive ability, we held females from the high‐density population at two different densities to create large and small offspring with the same genetic background. We measured the competitive ability of those offspring in mesocosms that contained either pure or mixed population treatments at either high or low density. High density increased competition, which was most evident in greatly reduced individual growth rates. Larger offspring from the high‐density population significantly delayed the onset of maturity of fish from the low‐density population. From our results, we infer that competitive conditions in nature have contributed to the evolution of genetically based interpopulation differences in offspring size as well as plasticity in offspring size in response to conspecific density.  相似文献   

7.
Expansion of the host range in phytophagous insects depends on their ability to form an association with a novel plant through changes in host‐related traits. Phenotypic plasticity has important effects on initial survival of individuals faced with a new plant, as well as on the courses of evolutionary change during long‐term adaptation to novel conditions. Using experimental populations of the seed beetle that evolved on ancestral (common bean) or novel (chickpea) host and applying reciprocal transplant at both larval and adult stage on the alternative host plant, we studied the relationship between the initial (plastic) phases of host‐shift and the subsequent stages of evolutionary divergence in life‐history strategies between populations exposed to the host‐shift process. After 48 generations, populations became well adapted to chickpea by evolving the life‐history strategy with prolonged larval development, increased body mass, earlier reproduction, shorter lifespan and decreased plasticity of all traits compared with ancestral conditions. In chickpea‐adapted beetles, negative fitness consequences of low plasticity of pre‐adult development (revealed as severe decrease in egg‐to‐adult viability on beans) exhibited mismatch with positive effects of low plasticity (i.e. low host sensitivity) in oviposition and fecundity. In contrast, beetles adapted to the ancestral host showed high plasticity of developmental process, which enabled high larval survival on chickpea, whereas elevated plasticity in adult behaviour (i.e. high host sensitivity) resulted in delayed reproduction and decreased fecundity on chickpea. The analysis of population growth parameters revealed significant fluctuation during successive phases of the host‐shift process in A. obtectus.  相似文献   

8.
Physical maturation and life‐history parameters are seen as evolutionary adaptations to different ecological and social conditions. Comparison of life‐history patterns of closely related species living in diverse environments helps to evaluate the validity of these assumptions but empirical data are lacking. The two gorilla species exhibit substantial differences in their environment, which allows investigation into the role of increased frugivory in shaping western gorilla life histories. We present behavioral and morphological data on western gorilla physical maturation and life‐history parameters from a 12.5‐year study at Mbeli Bai, a forest clearing in the Nouabalé‐Ndoki National Park in northern Congo. We assign photographs of known individuals to different life‐history classes and propose new age boundaries for life‐history classes in western gorillas, which can be used and tested at other western gorilla research sites. Our results show that western gorillas are weaned at a later age compared with mountain gorillas and indicate slower physical maturation of immatures. These findings support the risk‐aversion hypothesis for more frugivorous species. However, our methods need to be applied and tested with other gorilla populations. The slow life histories of western gorillas could have major consequences for social structure, mortality patterns and population growth rates that will affect recovery from population crashes of this critically endangered species. We emphasize that long‐term studies can provide crucial demographic and life‐history data that improve our understanding of life‐history evolution and adaptation and help to refine conservation strategies. Am. J. Primatol. 71:106–119, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

9.
Populations with different densities often show genetically based differences in life histories. The divergent life histories could be driven by several agents of selection, one of which is variation in per‐capita food levels. Its relationship with population density is complex, as it depends on overall food availability, individual metabolic demand, and food‐independent factors potentially affecting density, such as predation intensity. Here, we present a case study of two populations of a small live‐bearing freshwater fish, one characterized by high density, low predation risk, low overall food availability, and presumably low per‐capita food levels, and the other by low density, high predation risk, high overall food availability, and presumably high per‐capita food levels. Using a laboratory experiment, we examined whether fish from these populations respond differently to food limitation, and whether size at birth, a key trait with respect to density variation in this species, is associated with any such differential responses. While at the lower food level growth was slower, body size smaller, maturation delayed, and survival reduced in both populations, these fitness costs were smaller in fish from the high‐density population. At low food, only 15% of high‐density fish died, compared to 75% of low‐density fish. This difference was much smaller at high food (0% vs. 15% mortality). The increased survival of high‐density fish may, at least partly, be due to their larger size at birth. Moreover, being larger at birth enabled fish to mature relatively early even at the lower food level. We demonstrate that sensitivities to food limitation differ between study populations, consistent with selection for a greater ability to tolerate low per‐capita food availability in the high‐density population. While we cannot preclude other agents of selection from operating in these populations simultaneously, our results suggest that variation in per‐capita food levels is one of those agents.  相似文献   

10.
The canalization hypothesis postulates that the rate at which trait variation generates variation in the average individual fitness in a population determines how buffered traits are against environmental and genetic factors. The ranking of a species on the slow‐fast continuum – the covariation among life‐history traits describing species‐specific life cycles along a gradient going from a long life, slow maturity, and low annual reproductive output, to a short life, fast maturity, and high annual reproductive output – strongly correlates with the relative fitness impact of a given amount of variation in adult survival. Under the canalization hypothesis, long‐lived species are thus expected to display less individual heterogeneity in survival at the onset of adulthood, when reproductive values peak, than short‐lived species. We tested this life‐history prediction by analysing long‐term time series of individual‐based data in nine species of birds and mammals using capture‐recapture models. We found that individual heterogeneity in survival was higher in species with short‐generation time (< 3 years) than in species with long generation time (> 4 years). Our findings provide the first piece of empirical evidence for the canalization hypothesis at the individual level from the wild.  相似文献   

11.
Pace‐of‐life syndromes (POLSs) are suites of life‐history, physiological and behavioural traits that arise due to trade‐offs between allocation to current and future reproduction. Traits generally show covariation that can arise from genetic and environmental influences on phenotypes and constrain the independent evolution of traits, resulting in fitness consequences and impacts on population dynamics. The notion that correlations among traits may vary among populations along environmental gradients suggests an important role for the environment in shaping and maintaining POLSs. However, no synthesis has been attempted of the myriad ways in which environmental factors should influence POLSs. Here, we formulate a series of hypotheses targeting the critical interfaces of the environment and life‐history ‐ behaviour associations across different organisms. We discuss the hypotheses in light of findings from a systematic review of studies that measured changes in the association between behaviour and life‐history traits as a function of environmental conditions. The review revealed that POLSs are often shaped by environmental variation, where harshness of the environment in early life has the most consistent effects on POLS. However, only partial or no effects of environmental variation were found in a number of studies, which may result from the highly variable study systems, traits and environments studied. We highlight promising directions arising from the available studies and identify knowledge gaps that, if unaddressed, will impede progress in the field.  相似文献   

12.
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between‐year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.  相似文献   

13.
In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r‐selection and K‐selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r0 and the lifetime reproductive success (LRS) R0, both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r0 and average lifetimes are small, whereas R0 dominates and lifetimes are larger under small noise. Thus, K‐selection is closely linked to selection for large R0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r0 and R0) tend to be maximized at low and high densities, respectively, favoring density‐dependent changes in the optimal life history.  相似文献   

14.
Life‐history traits describe parameters associated with growth, size, survival, and reproduction. Life‐history variation is a hallmark of biological diversity, yet researchers commonly observe that one of the major axes of life‐history variation after controlling for body size involves trade‐offs among growth, reproduction, and longevity. This persistent pattern of covariation among these specific traits has engendered a search for shared mechanisms that could constrain or facilitate production of variation in life‐history strategies. Endocrine traits are one candidate mechanism that may underlie the integration of life history and other phenotypic traits. However, the vast majority of this research has been on the effects of steroid hormones such as glucocorticoids and androgens on life‐history trade‐offs. Here we propose an expansion of the focus on glucocorticoids and gonadal hormones and review the potential role of insulin‐like growth factor‐1 (IGF‐1) in shaping the adaptive integration of multiple life‐history traits. IGF‐1 is a polypeptide metabolic hormone largely produced by the liver. We summarize a vast array of research demonstrating that IGF‐1 levels are susceptible to environmental variation and that IGF‐1 can have potent stimulatory effects on somatic growth and reproduction but decrease lifespan. We review the few studies in natural populations that have measured plasma IGF‐1 concentrations and its associations with life‐history traits or other characteristics of the organism or its environment. We focus on two case studies that found support for the hypothesis that IGF‐1 mediates adaptive divergence in suites of life‐history traits in response to varying ecological conditions or artificial selection. We also examine what we view as potentially fruitful avenues of research on this topic, which until now has been rarely investigated by evolutionary ecologists. We discuss how IGF‐1 may facilitate adaptive plasticity in life‐history strategies in response to early environmental conditions and also how selection on loci controlling IGF‐1 signaling may mediate population divergence and eventual speciation. After consideration of the interactions among androgens, glucocorticoids, and IGF‐1 we suggest that IGF‐1 be considered a suitable candidate mechanism for mediating life‐history traits. Finally, we discuss what we can learn about IGF‐1 from studies in free‐ranging animals. The voluminous literature in laboratory and domesticated animals documenting relationships among IGF‐1, growth, reproduction, and lifespan demonstrates the potential for a number of new research questions to be asked in free‐ranging animals. Examining how IGF‐1 mediates life‐history traits in free‐ranging animals could lead to great insight into the mechanisms that influence life‐history variation.  相似文献   

15.
Understanding how wild immune variation covaries with other traits can reveal how costs and trade‐offs shape immune evolution in the wild. Divergent life history strategies may increase or alleviate immune costs, helping shape immune variation in a consistent, testable way. Contrasting hypotheses suggest that shorter life histories may alleviate costs by offsetting them against increased mortality, or increase the effect of costs if immune responses are traded off against development or reproduction. We investigated the evolutionary relationship between life history and immune responses within an island radiation of three‐spined stickleback, with discrete populations of varying life histories and parasitism. We sampled two short‐lived, two long‐lived and an anadromous population using qPCR to quantify current immune profile and RAD‐seq data to study the distribution of immune variants within our assay genes and across the genome. Short‐lived populations exhibited significantly increased expression of all assay genes, which was accompanied by a strong association with population‐level variation in local alleles and divergence in a gene that may be involved in complement pathways. In addition, divergence around the eda gene in anadromous fish is likely associated with increased inflammation. A wider analysis of 15 populations across the island revealed that immune genes across the genome show evidence of having diverged alongside life history strategies. Parasitism and reproductive investment were also important sources of variation for expression, highlighting the caution required when assaying immune responses in the wild. These results provide strong, gene‐based support for current hypotheses linking life history and immune variation across multiple populations of a vertebrate model.  相似文献   

16.
When females mate with more than one male, sexual selection acts both before and after mating. The interaction between pre‐ and postmating episodes of selection is expected to be context dependent, but few studies have investigated how total sexual selection changes under different ecological conditions. We examined how population density mediates the interaction between pre‐ and postmating sexual selection by establishing replicate populations of the horned dung beetle Onthophagus taurus at low, medium, and high densities, and then using microsatellite‐based parentage analyses to measure male fitness. We found that mating success and fertilization success were positively correlated at all three densities, but the strength of the correlation decreased with increasing density. We also found a shift from negative to positive linear selection on testes mass as density increased, and opposing selection on weapons and testes at high densities. These patterns suggest that the importance of postmating processes increases with increasing population density, which reduces the selective advantage of weapons for premating contest competition, and increases the selective advantage of large ejaculates for postmating sperm competition. We expect that density‐dependent selection on testes mass has contributed to the phenotypic variation observed between natural populations of O. taurus that differ in density.  相似文献   

17.
Phenotypic plasticity describes the ability of an individual to alter its phenotype in response to the environment and is potentially adaptive when dealing with environmental variation. However, robustness in the face of a changing environment may often be beneficial for traits that are tightly linked to fitness. We hypothesized that robustness of some traits may depend on specific patterns of plasticity within and among other traits. We used a reaction norm approach to study robustness and phenotypic plasticity of three life‐history traits of the collembolan Orchesella cincta in environments with different thermal regimes. We measured adult mass, age at maturity and growth rate of males and females from heath and forest habitats at two temperatures (12 and 22 °C). We found evidence for ecotype‐specific robustness of female adult mass to temperature, with a higher level of robustness in the heath ecotype. This robustness is facilitated by plastic adjustments of growth rate and age at maturity. Furthermore, female fecundity is strongly influenced by female adult mass, explaining the importance of realizing a high mass across temperatures for females. These findings indicate that different predicted outcomes of life‐history theory can be combined within one species' ontogeny and that models describing life‐history strategies should not assume that traits like growth rate are maximized under all conditions. On a methodological note, we report a systematic inflation of variation when standard deviations and correlation coefficients are calculated from family means as opposed to individual data within a family structure.  相似文献   

18.
1. Density‐dependent growth has been widely reported in freshwater fishes, but the ontogenetic evolution of competition and its subsequent effects on growth through a life span remains unclear. 2. Patterns of competition can be described by integrating population abundance data with habitat‐modelling results. Weighted usable area (WUA; m2 WUA ha?1) curves are obtained for each flow value and are then coupled with demographic data to obtain the occupancy rates (trout m?2 WUA, the density of a given age class related to its suitable habitat) of the WUA for every age class, year and site. 3. We examined a long‐term data series searching for temporal variation in the influence of habitat occupancy rate on the growth of brown trout Salmo trutta. We tested whether (i) mean cohort mass (mean mass of the cohort during the first 3 years of life) is affected by the occupancy rate experienced across a life span; and (ii) the occupancy rate experienced at different ages influenced mean body size. 4. We observed a consistent negative power relationship between average cohort mass and mean occupancy rate through a life span, indicating that stronger cohorts were related to a reduced growth, with likely consequences for individual fitness. 5. The effects of occupancy rate on size‐at‐age were mainly detected in the size attained at the second year of life, but they were because of the competition at different times. Thus, the level of competition varied through ontogeny, in some of the rivers affecting growth since the first year of life, whereas in most of the rivers the main effects on body size resulted from the competition during the second year of life. 6. Occupancy rate appears more appropriate than density for assessing the occurrence of habitat competition in freshwater fishes, since it encompasses the differences in quantity and quality of suitable habitat for each age class. 7. Our study highlights the importance of density‐dependent growth as a key process in the dynamics of brown trout populations, its temporal variation depending on the temporal changes of density and the variation of competition associated with the habitat capacity for each life stage.  相似文献   

19.
20.
Delaying sexual maturation can lead to larger body size and higher reproductive success, but carries an increased risk of death before reproducing. Classical life history theory predicts that trade‐offs between reproductive success and survival should lead to the evolution of an optimal strategy in a given population. However, variation in mating strategies generally persists, and in general, there remains a poor understanding of genetic and physiological mechanisms underlying this variation. One extreme case of this is in the Atlantic salmon (Salmo salar), which can show variation in the age at which they return from their marine migration to spawn (i.e. their ‘sea age’). This results in large size differences between strategies, with direct implications for individual fitness. Here, we used an Illumina Infinium SNP array to identify regions of the genome associated with variation in sea age in a large population of Atlantic salmon in Northern Europe, implementing individual‐based genome‐wide association studies (GWAS) and population‐based FST outlier analyses. We identified several regions of the genome which vary in association with phenotype and/or selection between sea ages, with nearby genes having functions related to muscle development, metabolism, immune response and mate choice. In addition, we found that individuals of different sea ages belong to different, yet sympatric populations in this system, indicating that reproductive isolation may be driven by divergence between stable strategies. Overall, this study demonstrates how genome‐wide methodologies can be integrated with samples collected from wild, structured populations to understand their ecology and evolution in a natural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号