首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Multiple organs express testin (TES), including the heart. Nevertheless, current understanding of the influence of TES on cardiovascular diseases, especially on cardiac hypertrophy and its etiology, is insufficient. This study investigated the influence of TES on cardiac hypertrophy and its etiology. Murine models with excessive TES expression specific to the heart were constructed with an adeno‐associated virus expression system. Cardiac hypertrophy was stimulated through aortic banding (AB). The severity of cardiac hypertrophy was evaluated through molecular, echocardiographic, pathological, and hemodynamic examination. The findings of our study revealed that TES expression was remarkably suppressed not only in failing human hearts but also in mouse hearts with cardiac hypertrophy. It was discovered that excessive TES expression driven by an adeno‐associated viral vector noticeably inhibited hypertrophy triggered by angiotensin II (Ang II) in cultivated cardiomyocytes from newborn rats. It was also revealed that TES knockdown via AdshTES caused the reverse phenotype in cardiomyocytes. Furthermore, it was proved that excessive TES expression attenuated the ventricular dilation, cardiac hypertrophy, dysfunction, and fibrosis triggered by AB in mice. It was discovered that TES directly interacted with calcineurin and suppressed its downstream signalling pathway. Moreover, the inactivation of calcineurin with cyclosporin A greatly offset the exacerbated hypertrophic response triggered by AB in TES knockdown mice. Overall, the findings of our study suggest that TES serves as a crucial regulator of the hypertrophic reaction by hindering the calcineurin‐dependent pathway in the heart.  相似文献   

3.
Prolonged pathological myocardial hypertrophy leads to end‐stage heart failure. Thymoquinone (TQ), a bioactive component extracted from Nigella sativa seeds, is extensively used in ethnomedicine to treat a broad spectrum of disorders. However, it remains unclear whether TQ protects the heart from pathological hypertrophy. This study was conducted to examine the potential utility of TQ for treatment of pathological cardiac hypertrophy and if so, to elucidate the underlying mechanisms. Male C57BL/6J mice underwent either transverse aortic constriction (TAC) or sham operation, followed by TQ treatment for six consecutive weeks. In vitro experiments consisted of neonatal rat cardiomyocytes (NRCMs) that were exposed to phenylephrine (PE) stimulation to induce cardiomyocyte hypertrophy. In this study, we observed that systemic administration of TQ preserved cardiac contractile function, and alleviated cardiac hypertrophy, fibrosis and oxidative stress in TAC‐challenged mice. The in vitro experiments showed that TQ treatment attenuated the PE‐induced hypertrophic response in NRCMs. Mechanistical experiments showed that supplementation of TQ induced reactivation of the AMP‐activated protein kinase (AMPK) with concomitant inhibition of ERK 1/2, p38 and JNK1/2 MAPK cascades. Furthermore, we demonstrated that compound C, an AMPK inhibitor, abolished the protective effects of TQ in in vivo and in vitro experiments. Altogether, our study disclosed that TQ provides protection against myocardial hypertrophy in an AMPK‐dependent manner and identified it as a promising agent for the treatment of myocardial hypertrophy.  相似文献   

4.
Cardiac vascular microenvironment is crucial for cardiac remodelling during the process of heart failure. Sphingosine 1‐phosphate (S1P) tightly regulates vascular homeostasis via its receptor, S1pr1. We therefore hypothesize that endothelial S1pr1 might be involved in pathological cardiac remodelling. In this study, heart failure was induced by transverse aortic constriction (TAC) operation. S1pr1 expression is significantly increased in microvascular endothelial cells (ECs) of post‐TAC hearts. Endothelial‐specific deletion of S1pr1 significantly aggravated cardiac dysfunction and deteriorated cardiac hypertrophy and fibrosis in myocardium. In vitro experiments demonstrated that S1P/S1pr1 praxis activated AKT/eNOS signalling pathway, leading to more production of nitric oxide (NO), which is an essential cardiac protective factor. Inhibition of AKT/eNOS pathway reversed the inhibitory effect of EC‐S1pr1‐overexpression on angiotensin II (AngII)‐induced cardiomyocyte (CM) hypertrophy, as well as on TGF‐β‐mediated cardiac fibroblast proliferation and transformation towards myofibroblasts. Finally, pharmacological activation of S1pr1 ameliorated TAC‐induced cardiac hypertrophy and fibrosis, leading to an improvement in cardiac function. Together, our results suggest that EC‐S1pr1 might prevent the development of pressure overload‐induced heart failure via AKT/eNOS pathway, and thus pharmacological activation of S1pr1 or EC‐targeting S1pr1‐AKT‐eNOS pathway could provide a future novel therapy to improve cardiac function during heart failure development.  相似文献   

5.
Heart failure preceded by pathological cardiac hypertrophy is a leading cause of death. Long noncoding RNA small nucleolar RNA host gene 1 (SNHG1) was reported to inhibit cardiomyocytes apoptosis, but the role and underlying mechanism of SNHG1 in pathological cardiac hypertrophy have not yet been understood. This study was designed to investigate the role and molecular mechanism of SNHG1 in regulating cardiac hypertrophy. We found that SNHG1 was upregulated during cardiac hypertrophy both in vivo (transverse aortic constriction treatment) and in vitro (phenylephrine [PE] treatment). SNHG1 overexpression attenuated the cardiomyocytes hypertrophy induced by PE, while SNHG1 inhibition promoted hypertrophic response of cardiomyocytes. Furthermore, SNHG1 and high‐mobility group AT‐hook 1 (HMGA1) were confirmed to be targets of miR‐15a‐5p. SNHG1 promoted HMGA1 expression by sponging miR‐15a‐5p, eventually attenuating cardiomyocytes hypertrophy. There data revealed a novel protective mechanism of SNHG1 in cardiomyocytes hypertrophy. Thus, targeting of SNHG1‐related pathway may be therapeutically harnessed to treat cardiac hypertrophy.  相似文献   

6.
Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.  相似文献   

7.
Pathological cardiac hypertrophy is a process of abnormal remodeling of cardiomyocytes in response to pressure overload or other stress stimuli, resulting in myocardial injury, which is a major risk factor for heart failure, leading to increased morbidity and mortality. General control nonrepressed protein 5 (GCN5)/lysine acetyltransferase 2 A, a member of the histone acetyltransferase and lysine acetyltransferase families, regulates a variety of physiological and pathological events. However, the function of GCN5 in pathological cardiac hypertrophy remains unclear. This study aimed to explore the role of GCN5 in the development of pathological cardiac hypertrophy. GCN5 expression was increased in isolated neonatal rat cardiomyocytes (NRCMs) and mouse hearts of a hypertrophic mouse model. GCN5 overexpression aggravated the cardiac hypertrophy triggered by transverse aortic constriction surgery. In contrast, inhibition of GCN5 impairs the development of pathological cardiac hypertrophy. Similar results were obtained upon stimulation of NRCMs (having GCN5 overexpressed or knocked down) with phenylephrine. Mechanistically, our results indicate that GCN5 exacerbates cardiac hypertrophy via excessive activation of the transforming growth factor β-activated kinase 1 (TAK1)-c-Jun N-terminal kinase (JNK)/p38 signaling pathway. Using a TAK1-specific inhibitor in rescue experiments confirmed that the activation of TAK1 is essential for GCN5-mediated cardiac hypertrophy. In summary, the current study elucidated the role of GCN5 in promotion of cardiac hypertrophy, thereby implying it to be a potential target for treatment.Subject terms: Heart failure, Cell signalling  相似文献   

8.
Cardiac hypertrophy, a major determinant of heart failure, is associated with heat shock proteins (HSPs). HSP75 has been reported to protect against environmental stresses; however, its roles in cardiac hypertrophy remain unclear. Here, we generated cardiac-specific inducible HSP75 transgenic mice (TG) and cardiac hypertrophy was developed at 4 weeks after aortic banding in TG mice and wild-type littermates. The results revealed that overexpression of HSP75 prevented cardiac hypertrophy and fibrosis as assessed by heart weight/body weight ratio, heart weight/tibia length ratio, echocardiographic and hemodynamic parameters, cardiomyocyte width, left ventricular collagen volume, and gene expression of hypertrophic markers. Further studies showed that overexpression of HSP75 inhibited the activation of TAK/P38, JNK, and AKT signaling pathways. Thus, HSP75 likely reduces the hypertrophy and fibrosis induced by pressure overload through blocking TAK/P38, JNK, and AKT signaling pathways.  相似文献   

9.
The functions of dual-specificity phosphatase 9 (DUSP9) in hepatic steatosis and metabolic disturbance during nonalcoholic fatty liver disease were discussed in our prior study. However, its roles in the pathophysiology of pressure overload-induced cardiac hypertrophy remain to be illustrated. This study attempted to uncover the potential contributions and underpinning mechanisms of DUSP9 in cardiac hypertrophy. Utilizing the gain-and-loss-of-functional approaches of DUSP9 the cardiac phenotypes arising from the pathological, echocardiographic, and molecular analysis were quantified. The results showed increased levels of DUSP9 in hypertrophic mice heart and angiotensin II treated cardiomyocytes. In accordance with the results of cellular hypertrophy in response to angiotensin II, cardiac hypertrophy exaggeration, fibrosis, and malfunction triggered by pressure overload was evident in the case of cardiac-specific conditional knockout of DUSP9. In contrast, transgenic mice hearts with DUSP9 overexpression portrayed restoration of the hypertrophic phenotypes. Further explorations of molecular mechanisms indicated the direct interaction of DUSP9 with ASK1, which further repressed p38 and JNK signaling pathways. Moreover, blocking ASK1 with ASK1-specific inhibitor compensated the pro-hypertrophic effects induced by DUSP9 deficiency in cardiomyocytes. The main findings of this study suggest the potential of DUSP9 in alleviating cardiac hypertrophy at least partially by repressing ASK1, thereby looks promising as a prospective target against cardiac hypertrophy.  相似文献   

10.
BackgroundCardiac hypertrophy and fibrosis are hallmarks of cardiac remodeling and are involved functionally in the development of heart failure (HF). However, it is unknown whether Zerumbone (Zer) prevents left ventricular (LV) systolic dysfunction by inhibiting cardiac hypertrophy and fibrosis.PurposeThis study investigated the effect of Zer on cardiac hypertrophy and fibrosis in vitro and in vivo.Study Design/methodsIn primary cultured cardiac cells from neonatal rats, the effect of Zer on phenylephrine (PE)-induced hypertrophic responses and transforming growth factor beta (TGF-β)-induced fibrotic responses was observed. To determine whether Zer prevents the development of pressure overload-induced HF in vivo, a transverse aortic constriction (TAC) mouse model was utilized. Cardiac function was evaluated by echocardiography. The changes of cardiomyocyte surface area were observed using immunofluorescence staining and histological analysis (HE and WGA staining). Collagen synthesis and fibrosis formation were measured by scintillation counter and picrosirius staining, respectively. The total mRNA levels of genes associated with hypertrophy (ANF and BNP) and fibrosis (Postn and α-SMA) were measured by qRT-PCR. The protein expressions (Akt and α-SMA) were assessed by western blotting.ResultsZer significantly suppressed PE-induced increase in cell size, mRNA levels of ANF and BNP, and Akt phosphorylation in cardiomyocytes. The TGF-β-induced increase in proline incorporation, mRNA levels of Postn and α-SMA, and protein expression of α-SMA were decreased by Zer in cultured cardiac fibroblasts. In the TAC male C57BL/6 mice, echocardiography results demonstrated that Zer improved cardiac function by increasing LV fractional shortening and reducing LV wall thickness compared with the vehicle group. ZER significantly reduced the level of phosphorylated Akt both in cultured cardiomyocytes treated with PE and in the hearts of TAC. Finally, Zer inhibited the pressure overload-induced cardiac hypertrophy and cardiac fibrosis.ConclusionZer ameliorates pressure overload-induced LV dysfunction, at least in part by suppressing both cardiac hypertrophy and fibrosis.  相似文献   

11.
Inflammation plays a key role in pressure overload‐induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High‐mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload‐induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild‐type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin‐embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC‐induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up‐regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload‐induced cardiac hypertrophy and cardiac dysfunction.  相似文献   

12.
Cellular FLICE-like inhibitory protein (Flip) is a negative regulator of nuclear factor κB signaling which has been shown previously to complicate with cardiac hypertrophy. In the present study, we tested the hypothesis that the knockout of Flip would increase cardiac hypertrophy in vivo and in vitro. The effects of Flip knockout on cardiac hypertrophy were investigated using in vitro and in vivo models. Flip was downregulated in transverse aortic constriction (TAC)-induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 1 h. An in vivo, heart hypertrophy model, was performed by TAC in Flip knockdown and sham mice. The extent of hypertrophy of heart was quantitated by echocardiography, and further confirmed by pathological and molecular examination of heart tissue samples. Conditional knockout of Flip in the murine heart increases the hypertrophic response induced by TAC, whereas cardiac function was preserved with reduced Flip levels in response to hypertrophic stimuli. Western blot experiments further showed Flip knockout activated markedly ASK1/P38 signaling cascades in vivo and in vitro. In conclusion, Flip preserves cardiac functions and inhibits cardiac hypertrophy partially by blocking ASK1/P38 signaling.  相似文献   

13.
We previously observed that disruption of FK506‐binding protein 12.6 (FKBP12.6) gene resulted in cardiac hypertrophy in male mice. Studies showed that overexpression of FKBP12.6 attenuated thoracic aortic constriction (TAC)‐induced cardiac hypertrophy in mice, whereas the adenovirus‐mediated overexpression of FKBP12.6 induced hypertrophy and apoptosis in cultured neonatal cardiomyocytes, indicating that the role of FKBP12.6 in cardiac hypertrophy is still controversial. In this study, we aimed to investigate the roles and mechanisms of FKBP12.6 in angiotensin II (AngII)‐induced cardiac hypertrophy using various transgenic mouse models in vivo and in vitro. FKBP12.6 knockout (FKBP12.6?/?) mice and cardiac‐specific FKBP12.6 overexpressing (FKBP12.6 TG) mice were infused with AngII (1500 ng/kg/min) for 14 days subcutaneously by implantation of an osmotic mini‐pump. The results showed that FKBP12.6 deficiency aggravated AngII‐induced cardiac hypertrophy, while cardiac‐specific overexpression of FKBP12.6 prevented hearts from the hypertrophic response to AngII stimulation in mice. Consistent with the results in vivo, overexpression of FKBP12.6 in H9c2 cells significantly repressed the AngII‐induced cardiomyocyte hypertrophy, seen as reductions in the cell sizes and the expressions of hypertrophic genes. Furthermore, we demonstrated that the protection of FKBP12.6 on AngII‐induced cardiac hypertrophy was involved in reducing the concentration of intracellular Ca2+ ([Ca2+]i), in which the protein significantly inhibited the key Ca2+/calmodulin‐dependent signalling pathways such as calcineurin/cardiac form of nuclear factor of activated T cells 4 (NFATc4), calmodulin kinaseII (CaMKII)/MEF‐2, AKT/Glycogen synthase kinase 3β (GSK3β)/NFATc4 and AKT/mTOR signalling pathways. Our study demonstrated that FKBP12.6 protects heart from AngII‐induced cardiac hypertrophy through inhibiting Ca2+/calmodulin‐mediated signalling pathways.  相似文献   

14.
Tumor necrosis factor superfamily ligands provoke a dilated cardiac phenotype signal through a common scaffolding protein termed tumor necrosis factor receptor-associated factor 2 (Traf2); however, Traf2 signaling in the adult mammalian cardiac hypertrophy is not fully understood. This study was aimed to identify the effect of Traf2 on cardiac hypertrophy and the underlying mechanisms. A significant up-regulation of Traf2 expression was observed in mice failing hearts. To further investigate the role of Traf2 in cardiac hypertrophy, we used cultured neonatal rat cardiomyocytes with gain and loss of Traf2 function and cardiac-specific Traf2-overexpressing transgenic (TG) mice. In cultured cardiomyocytes, Traf2 positively regulated angiotensin II (Ang II)-mediated hypertrophic growth, as detected by [3H]-Leucine incorporation, cardiac myocyte area, and hypertrophic marker protein levels. Cardiac hypertrophy in vivo was produced by constriction of transverse aortic (TAC) in TG mice and their wild-type controls. The extent of cardiac hypertrophy was evaluated by echocardiography as well as by pathological and molecular analyses of heart samples. Traf2 overexpression in the heart remarkably enhanced cardiac hypertrophy, left ventricular dysfunction in mice in response to TAC. Further analysis of the signaling pathway in vitro and in vivo suggested that these adverse effects of Traf2 were associated with the activation of AKT/glycogen synthase kinase 3β (GSK3β). The present study demonstrates that Traf2 serves as a novel mediator that enhanced cardiac hypertrophy by activating AKT/GSK3β signaling.  相似文献   

15.
Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure.  相似文献   

16.
17.
Granulocyte‐colony stimulating factor (G‐CSF) has been shown to promote mobilization of bone marrow‐derived stem cells (BMCs) into the bloodstream associated with improved survival and cardiac function after myocardial infarction. Therefore, the aim of the present study was to investigate whether G‐CSF is able to attenuate cardiac remodelling in a mouse model of pressure‐induced LV hypertrophy focusing on mobilization and migration of BMCs. LV hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6J mice. Four weeks after TAC procedure. Mice were treated with G‐CSF (100 μg/kg/day; Amgen Biologicals) for 2 weeks. The number of migrated BMCs in the heart was analysed by flow cytometry. mRNA expression and protein level of different growth factors in the myocardium were investigated by RT‐PCR and ELISA. Functional analyses assessed by echocardiography and immunohistochemical analysis were performed 8 weeks after TAC procedure. G‐CSF‐treated animals revealed enhanced homing of VLA‐4+ and c‐kit+ BMCs associated with increased mRNA expression and protein level of the corresponding homing factors Vascular cell adhesion protein 1 and Stem cell factor in the hypertrophic myocardium. Functionally, G‐CSF significantly preserved LV function after TAC procedure, which was associated with a significantly reduced area of fibrosis compared to control animals. Furthermore, G‐CSF‐treated animals revealed a significant improvement of survival after TAC procedure. In summary, G‐CSF treatment preserves cardiac function and is able to diminish cardiac fibrosis after induction of LV hypertrophy associated with increased homing of VLA‐4+ and c‐kit+ BMCs and enhanced expression of their respective homing factors VCAM‐1 and SCF.  相似文献   

18.
The current study was designed to explore the role and underlying mechanism of lncRNA taurine up-regulated gene 1 (TUG1) in cardiac hypertrophy. Mice were treated by transverse aortic constriction (TAC) surgery to induce cardiac hypertrophy, and cardiomyocytes were treated by phenylephrine (PE) to induce hypertrophic phenotype. Haematoxylin-eosin (HE), wheat germ agglutinin (WGA) and immunofluorescence (IF) were used to examine morphological alterations. Real-time PCR, Western blots and IF staining were used to detect the expression of RNAs and proteins. Luciferase assay and RNA pull-down assay were used to verify the interaction. It is revealed that TUG1 was up-regulated in the hearts of mice treated by TAC surgery and in PE-induced cardiomyocytes. Functionally, overexpression of TUG1 alleviated cardiac hypertrophy both in vivo and in vitro. Mechanically, TUG1 sponged and sequestered miR-34a to increase the Dickkopf 1 (DKK1) level, which eventually inhibited the activation of Wnt/β-catenin signalling. In conclusion, the current study reported the protective role and regulatory mechanism of TUG1 in cardiac hypertrophy and suggested that TUG1 may serve as a novel molecular target for treating cardiac hypertrophy.  相似文献   

19.
The pathogenesis of cardiac hypertrophy is tightly associated with activation of intracellular hypertrophic signalling pathways, which leads to the synthesis of various proteins. Tripartite motif 10 (TRIM10) is an E3 ligase with important functions in protein quality control. However, its role in cardiac hypertrophy was unclear. In this study, neonatal rat cardiomyocytes (NRCMs) and TRIM10-knockout mice were subjected to phenylephrine (PE) stimulation or transverse aortic constriction (TAC) to induce cardiac hypertrophy in vitro and in vivo, respectively. Trim10 expression was significantly increased in hypertrophied murine hearts and PE-stimulated NRCMs. Knockdown of TRIM10 in NRCMs alleviated PE-induced changes in the size of cardiomyocytes and hypertrophy gene expression, whereas TRIM10 overexpression aggravated these changes. These results were further verified in TRIM10-knockout mice. Mechanistically, we found that TRIM10 knockout or knockdown decreased AKT phosphorylation. Furthermore, we found that TRIM10 knockout or knockdown increased ubiquitination of phosphatase and tensin homolog (PTEN), which negatively regulated AKT activation. The results of this study reveal the involvement of TRIM10 in pathological cardiac hypertrophy, which may occur by prompting of PTEN ubiquitination and subsequent activation of AKT signalling. Therefore, TRIM10 may be a promising target for treatment of cardiac hypertrophy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号