共查询到20条相似文献,搜索用时 15 毫秒
1.
Long noncoding RNA MALAT1 enhances the docetaxel resistance of prostate cancer cells via miR‐145‐5p‐mediated regulation of AKAP12 下载免费PDF全文
Dong Xue Hao Lu Han‐Yan Xu Cui‐Xing Zhou Xiao‐Zhou He 《Journal of cellular and molecular medicine》2018,22(6):3223-3237
Our present work was aimed to study on the regulatory role of MALAT1/miR‐145‐5p/AKAP12 axis on docetaxel (DTX) sensitivity of prostate cancer (PCa) cells. The microarray data (GSE33455) to identify differentially expressed lncRNAs and mRNAs in DTX‐resistant PCa cell lines (DU‐145‐DTX and PC‐3‐DTX) was retrieved from the Gene Expression Omnibus (GEO) database. QRT‐PCR analysis was performed to measure MALAT1 expression in DTX‐sensitive and DTX‐resistant tissues/cells. The human DTX‐resistant cell lines DU145‐PTX and PC3‐DTX were established as in vitro cell models, and the expression of MALAT1, miR‐145‐5p and AKAP12 was manipulated in DTX‐sensitive and DTX‐resistant cells. Cell viability was examined using MTT assay and colony formation methods. Cell apoptosis was assessed by TUNEL staining. Cell migration and invasion was determined by scratch test (wound healing) and Transwell assay, respectively. Dual‐luciferase assay was applied to analyse the target relationship between lncRNA MALAT1 and miR‐145‐5p, as well as between miR‐145‐5p and AKAP12. Tumour xenograft study was undertaken to confirm the correlation of MALAT1/miR‐145‐5p/AKAP12 axis and DTX sensitivity of PCa cells in vivo. In this study, we firstly notified that the MALAT1 expression levels were up‐regulated in clinical DTX‐resistant PCa samples. Overexpressed MALAT1 promoted cell proliferation, migration and invasion but decreased cell apoptosis rate of PCa cells in spite of DTX treatment. We identified miR‐145‐5p as a target of MALAT1. MiR‐145‐5p overexpression in PC3‐DTX led to inhibited cell proliferation, migration and invasion as well as reduced chemoresistance to DTX, which was attenuated by MALAT1. Moreover, we determined that AKAP12 was a target of miR‐145‐5p, which significantly induced chemoresistance of PCa cells to DTX. Besides, it was proved that MALAT1 promoted tumour cell proliferation and enhanced DTX‐chemoresistance in vivo. There was an lncRNA MALAT1/miR‐145‐5p/AKAP12 axis involved in DTX resistance of PCa cells and provided a new thought for PCa therapy. 相似文献
2.
Yuling Diao Baozhe Jin Liyong Huang Wenke Zhou 《Journal of cellular and molecular medicine》2018,22(4):2357-2367
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma. 相似文献
3.
4.
5.
Meng Wu Yawei Huang Tongchang Chen Weichao Wang Shiguang Yang Zhenfeng Ye Xiaoqing Xi 《Journal of cellular and molecular medicine》2019,23(1):29-38
This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT‐PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR‐9‐5p and QKI‐5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK‐8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR‐9‐5p, whereas miR‐9‐5p down‐regulated QKI‐5 expression. Overexpressed MEG3 and QKI‐5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR‐9‐5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up‐regulated expression of QKI‐5 in vivo. LncRNA MEG3 was a down‐regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR‐9‐5p and its targeting gene QKI‐5. 相似文献
6.
Qi Li Meng Qin Qi Tan Tengteng Li Zehui Gu Peng Huang Liqun Ren 《Journal of cellular and molecular medicine》2020,24(3):2260-2271
Pirarubicin (THP), an anthracycline anticancer drug, is a first‐line therapy for various solid tumours and haematologic malignancies. However, THP can cause dose‐dependent cumulative cardiac damage, which limits its therapeutic window. The mechanisms underlying THP cardiotoxicity are not fully understood. We previously showed that MiR‐129‐1‐3p, a potential biomarker of cardiovascular disease, was down‐regulated in a rat model of THP‐induced cardiac injury. In this study, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses to determine the pathways affected by miR‐129‐1‐3p expression. The results linked miR‐129‐1‐3p to the Ca2+ signalling pathway. TargetScan database screening identified a tentative miR‐129‐1‐3p‐binding site at the 3′‐UTR of GRIN2D, a subunit of the N‐methyl‐D‐aspartate receptor calcium channel. A luciferase reporter assay confirmed that miR‐129‐1‐3p directly regulates GRIN2D. In H9C2 (rat) and HL‐1 (mouse) cardiomyocytes, THP caused oxidative stress, calcium overload and apoptotic cell death. These THP‐induced changes were ameliorated by miR‐129‐1‐3p overexpression, but exacerbated by miR‐129‐1‐3p knock‐down. In addition, miR‐129‐1‐3p overexpression in cardiomyocytes prevented THP‐induced changes in the expression of proteins that are either key components of Ca2+ signalling or important regulators of intracellular calcium trafficking/balance in cardiomyocytes including GRIN2D, CALM1, CaMKⅡδ, RyR2‐pS2814, SERCA2a and NCX1. Together, these bioinformatics and cell‐based experiments indicate that miR‐129‐1‐3p protects against THP‐induced cardiomyocyte apoptosis by down‐regulating the GRIN2D‐mediated Ca2+ pathway. Our results reveal a novel mechanism underlying the pathogenesis of THP‐induced cardiotoxicity. The miR‐129‐1‐3p/Ca2+ signalling pathway could serve as a target for the development of new cardioprotective agents to control THP‐induced cardiotoxicity. 相似文献
7.
Peng Li Zhiwei Xiao Jiajun Luo Yaojun Zhang Lizhu Lin 《Journal of cellular and molecular medicine》2019,23(4):2475-2488
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1. 相似文献
8.
9.
Shixiong Jiang Dazhuang Miao Muhong Wang Jiachen Lv Yihui Wang Jinxue Tong 《Journal of cellular and molecular medicine》2019,23(1):630-640
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells. 相似文献
10.
Epigallocatechin‐3‐O‐gallate up‐regulates microRNA‐199a‐3p expression by down‐regulating the expression of cyclooxygenase‐2 in stimulated human osteoarthritis chondrocytes 下载免费PDF全文
Zafar Rasheed Naila Rasheed Hani A. Al‐Shobaili 《Journal of cellular and molecular medicine》2016,20(12):2241-2248
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes. 相似文献
11.
miR‐15b‐5p facilitates the tumorigenicity by targeting RECK and predicts tumour recurrence in prostate cancer 下载免费PDF全文
Ran Chen Lu Sheng Hao‐Jie Zhang Ming Ji Wei‐Qing Qian 《Journal of cellular and molecular medicine》2018,22(3):1855-1863
MicroRNAs (miRNAs) have been reported to participate in many biological behaviours of multiple malignancies. Recent studies have shown that miR‐15b‐5p (miR‐15b) exhibits dual roles by accelerating or blocking tumour progression. However, the molecular mechanisms by which miR‐15b contributes to prostate cancer (PCa) are still elusive. Here, miR‐15b expression was found significantly up‐regulated in PCa in comparison with the normal samples and was positively correlated with age and Gleason score in patients with PCa. Notably, PCa patients with miR‐15b high expression displayed a higher recurrence rate than those with miR‐15b low expression (P = 0.0058). Knockdown of miR‐15b suppressed cell growth and invasiveness in 22RV1 and PC3 cells, while overexpression of miR‐15b reversed these effects. Then, we validated that RECK acted as a direct target of miR‐15b by dual‐luciferase assay and revealed the negative correlation of RECK with miR‐15b expression in PCa tissues. Ectopic expression of RECK reduced cell proliferation and invasive potential and partially abrogated the tumour‐promoting effects caused by miR‐15b overexpression. Additionally, miR‐15b knockdown inhibited tumour growth activity in a mouse PCa xenograft model. Taken together, our findings indicate that miR‐15b promotes the progression of PCa cells by targeting RECK and represents a potential marker for patients with PCa. 相似文献
12.
13.
14.
Feng Guo Qingfeng Fu Yang Wang Guoqing Sui 《Journal of cellular and molecular medicine》2019,23(9):5907-5919
Thyroid cancer (TC) is a prevalent endocrine malignant cancer whose pathogenic mechanism remains unclear. The aim of the study was to investigate the roles of long non‐coding RNA (lncRNA) NR2F1‐AS1/miRNA‐338‐3P/CCND1 axis in TC progression. Differentially expressed lncRNAs and mRNAs in TC tissues were screened out and visualized by R program. Relative expression of NR2F1‐AS1, miRNA‐338‐3p and cyclin D1 (CCND1) was determined by quantitative real time polymerase chain reaction. In addition, Western blot analysis was adopted for evaluation of protein expression of CCND1. Targeted relationships between NR2F1‐AS1 and miRNA‐338‐3p, as well as miRNA‐338‐3p and CCND1 were predicted using bioinformatics analysis and validated by dual‐luciferase reporter gene assay. Besides, tumour xenograft assay was adopted for verification of the role of NR2F1‐AS1 in TC in vivo. NR2F1‐AS1 and CCND1 were overexpressed, whereas miRNA‐338‐3p was down‐regulated in TC tissues and cell lines. Down‐regulation of NR2F1‐AS1 and CCND1 suppressed proliferation and migration of TC cells yet greatly enhanced cell apoptotic rate. Silence of NR2F1‐AS1 significantly suppressed TC tumorigenesis in vivo. NR2F1‐AS1 sponged miRNA‐338‐3p to up‐regulate CCND1 expression to promote TC progression. Our study demonstrated that up‐regulation of NR2F1‐AS1 accelerated TC progression through regulating miRNA‐338‐3P/CCND1 axis. 相似文献
15.
16.
Endogenous hormone 2‐methoxyestradiol suppresses venous hypertension‐induced angiogenesis through up‐ and down‐regulating p53 and id‐1 下载免费PDF全文
Jie Yuan Chunjie Yang Zehan Wu Jianping Song Wei Zhu Ying Mao Liang Chen 《Journal of cellular and molecular medicine》2018,22(2):957-967
Brain arteriovenous malformations (AVMs) which associate with angiogenesis due to local hypertension, chronic cerebral ischaemia and tissue hypoxia usually lead to haemorrhage, however, the therapeutic medicine for the disease is still lacking. 2‐methoxyestradiol (2‐ME) has been shown effective in the anti‐angiogenic treatment. This study was conducted to examine whether and how 2‐ME could improve the vascular malformations. Intracranial venous hypertension (VH) model produced in adult male Sprague‐Dawley rats and culture of human umbilical vein endothelial cells (HUVECs) at the anoxia condition were used to induce in vivo and in vitro angiogenesis, respectively. Lentiviral vectors of ID‐1 and p53 genes and of their siRNA were intracranially injected into rats and transfected into HUVECs to overexpress and down‐regulate these molecules. 2‐ME treatment not only reduced the in vivo progression of brain tissue angiogenesis in the intracranial VH rats and the in vitro increases in microvasculature formation, cellular migration and HIF‐1α expression induced by anoxia in HUVECs but also reversed the up‐regulation of ID‐1 and down‐regulation of p53 in both the in vivo and in vitro angiogenesis models. All of the anti‐angiogenesis effects of 2‐ME observed in VH rats and anoxic HUVECs were abrogated by ID‐1 overexpression and p53 knockdown. Our data collectively suggest that 2‐ME treatment inhibits hypoxia/anoxia‐induced angiogenesis dependently on ID‐1 down‐regulation and p53 up‐regulation, providing a potential alternative medical treatment for un‐ruptured AVM patients. 相似文献
17.
Cheng‐Yen Tsai Tzong‐Shyuan Lee Yu Ru Kou Yuh‐Lin Wu 《Journal of cellular biochemistry》2009,108(2):489-498
Inflammation is a complex process involving cytokine production to regulate host defense cascades. In contrast to the therapeutic significance of acute inflammation, a pathogenic impact of chronic inflammation on cancer development has been proposed. Upregulation of inflammatory cytokines, such as IL‐1β and IL‐8, has been noted in prostate cancer patients and IL‐8 has been shown to promote prostate cancer cell proliferation and migration; however, it is not clear whether IL‐1β regulates IL‐8 expression in prostate cancer cells. Glucosamine is widely regarded as an anti‐inflammatory agent and thus we hypothesized that if IL‐1β activated IL‐8 production in prostate cancer cells, then glucosamine ought to blunt such an effect. Three prostate cancer cell lines, DU‐145, PC‐3, and LNCaP, were used to evaluate the effects of IL‐1β and glucosamine on IL‐8 expression using ELISA and RT‐PCR analyses. IL‐1β elevated IL‐8 mRNA expression and subsequent IL‐8 secretion. Glucosamine significantly inhibited IL‐1β‐induced IL‐8 secretion. IL‐8 appeared to induce LNCaP cell proliferation by MTT assay; involvement of IL‐8 in IL‐1β‐dependent PC‐3 cell migration was demonstrated by wound‐healing and transwell migration assays. Inhibitors of MAPKs and NFκB were used to pinpoint MAPKs but not NFκB being involved in IL‐1β‐mediated IL‐8 production. IL‐1β‐provoked phosphorylation of all MAPKs was notably suppressed by glucosamine. We suggest that IL‐1β can activate the MAPK pathways resulting in an induction of IL‐8 production, which promotes prostate cancer cell proliferation and migration. In this context, glucosamine appears to inhibit IL‐1β‐mediated activation of MAPKs and therefore reduces IL‐8 production; this, in turn, attenuates cell proliferation/migration. J. Cell. Biochem. 108: 489–498, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
18.
Luís Korrodi‐Gregório Joana Vieira Silva Luís Santos‐Sousa Maria João Freitas Juliana Felgueiras Margarida Fardilha 《Journal of cellular and molecular medicine》2014,18(4):555-567
Protein phosphorylation is a key mechanism by which normal and cancer cells regulate their main transduction pathways. Protein kinases and phosphatases are precisely orchestrated to achieve the (de)phosphorylation of candidate proteins. Indeed, cellular health is dependent on the fine‐tune of phosphorylation systems, which when deregulated lead to cancer. Transforming growth factor beta (TGF‐β) pathway involvement in the genesis of prostate cancer has long been established. Many of its members were shown to be hypo‐ or hyperphosphorylated during the process of malignancy. A major phosphatase that is responsible for the vast majority of the serine/threonine dephosphorylation is the phosphoprotein phosphatase 1 (PPP1). PPP1 has been associated with the dephosphorylation of several proteins involved in the TGF‐β cascade. This review will discuss the role of PPP1 in the regulation of several TGF‐β signalling members and how the subversion of this pathway is related to prostate cancer development. Furthermore, current challenges on the protein phosphatases field as new targets to cancer therapy will be addressed. 相似文献
19.
Yuxing Zhu Yanni Ma Honghua Peng Lian Gong Mengqin Xiao Liang Xiang Dong He Ke Cao 《Journal of cellular and molecular medicine》2019,23(1):93-103
MiR‐130b and SAM and SH3 domain containing 1 (SASH1) play an important role in many types of human cancers. The aim of our research was to study their interactions in the process of the proliferation and aggressiveness of oesophageal squamous cell carcinoma (ESCC) cells. Microarray analysis was done to screen the differentially expressed genes in the ESCC tissues. miR‐130b and SASH1 mRNA levels in the ESCC tissues and cells were detected by qRT‐PCR. Dual luciferase reporter system was used to verify the target relationship between miR‐130b and SASH1. The effects of miR‐130b on SASH1 expression were explored by western blot in KYSE30 and TE1 cell lines. CCK‐8 assay, flow cytometry, Transwell, and wound healing assays were conducted to explore the effects of miR‐130b and SASH1 in vitro. In addition, in vivo experiments were conducted to study the roles of miR‐130b and SASH1. miR‐130b was highly expressed, while SASH1 was the opposite in both the ESCC tissues and cells. The expression of SASH1 was inhibited by the direct binding of miR‐130b. The inhibition of miR‐130b reduced the proliferation and aggressiveness of ESCC cells, while it also induced apoptosis and cell cycle arrest in the ESCC cells by suppressing SASH1. The in vivo assay suggested that the overexpression of miR‐130b promoted the growth of ESCC tumours. MiR‐130b was up‐regulated in the ESCC tumour tissues and cells, acting as a tumour promoter. A stimulating effect was demonstrated on ESCC cell growth and aggressiveness by suppressing SASH1, which is an anti‐oncogene. 相似文献
20.
How lncRNA SNHG1 influences the aggressiveness of nasopharyngeal carcinoma cells as well as the underlying mechanism was studied. The lncRNA differences were analysed by GSE12452 gene microarray. The expression of SNHG1, MiR‐145‐5p and NUAK1 was identified by qRT‐PCR and western blot. Transfection was conducted to construct nasopharyngeal carcinoma cells with different expressions of SNHG1, miR‐145‐5p and NUAK1. Dual‐luciferase reporter assay was performed to explore the relationship between SNHG1, miR‐145‐5p and NUAK1. Wound‐healing assay and transwell invasion experiments were employed to study changes in cell migration capacity and cell invasion, respectively. Tumour xenografts were performed to observe lung metastasis of nude mice inoculated with transfected CNE cells. SNHG1 is highly expressed in nasopharyngeal carcinoma tissues and in cell lines. Down‐regulation of SNHG1 facilitated the expression of miR‐145‐5p and further suppressed the level of NAUK1 in CNE and HNE‐1 cells. Silencing of SNHG1, up‐regulation of miR‐145‐5p and inhibition of NAUK1 by relative transfection all attenuated the aggressiveness of CNE and HNE‐1 cells both in vivo and in vitro. Moreover, the impaired cell migration and invasion by SNHG1 siRNA could be rescued by cotransfection of miR‐145‐5p in CNE and HNE‐1 cells. LncRNA SNHG1 promoted the expression of NUAK1 by down‐regulating miR‐145‐5p and thus promoted the aggressiveness of nasopharyngeal carcinoma cells through AKT signalling pathway and induced epithelial‐mesenchymal transition (EMT). 相似文献